Home
Class 12
MATHS
The max. and min. value of (x^2 + x+1)/...

The max. and min. value of `(x^2 + x+1)/(x^2 - x + 1)` are

A

(2,1)

B

`(3,1/3)`

C

`(1,0)`

D

`(3,1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \( f(x) = \frac{x^2 + x + 1}{x^2 - x + 1} \), we will follow these steps: ### Step 1: Differentiate the function We need to find the derivative of \( f(x) \) and set it to zero to find critical points. We will use the quotient rule for differentiation. The quotient rule states that if \( f(x) = \frac{g(x)}{h(x)} \), then: \[ f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{[h(x)]^2} \] Here, \( g(x) = x^2 + x + 1 \) and \( h(x) = x^2 - x + 1 \). Calculating the derivatives: - \( g'(x) = 2x + 1 \) - \( h'(x) = 2x - 1 \) Now applying the quotient rule: \[ f'(x) = \frac{(2x + 1)(x^2 - x + 1) - (x^2 + x + 1)(2x - 1)}{(x^2 - x + 1)^2} \] ### Step 2: Set the derivative equal to zero We set the numerator equal to zero: \[ (2x + 1)(x^2 - x + 1) - (x^2 + x + 1)(2x - 1) = 0 \] ### Step 3: Simplify the equation Expanding both terms: 1. \( (2x + 1)(x^2 - x + 1) = 2x^3 - 2x^2 + 2x + x^2 - x + 1 = 2x^3 - x^2 + x + 1 \) 2. \( (x^2 + x + 1)(2x - 1) = 2x^3 + 2x^2 + 2x - x^2 - x - 1 = 2x^3 + x^2 + x - 1 \) Now, substituting back: \[ (2x^3 - x^2 + x + 1) - (2x^3 + x^2 + x - 1) = 0 \] This simplifies to: \[ -2x^2 + 2 = 0 \implies x^2 = 1 \implies x = \pm 1 \] ### Step 4: Evaluate the function at critical points Now we evaluate \( f(x) \) at the critical points \( x = 1 \) and \( x = -1 \). 1. For \( x = 1 \): \[ f(1) = \frac{1^2 + 1 + 1}{1^2 - 1 + 1} = \frac{3}{1} = 3 \] 2. For \( x = -1 \): \[ f(-1) = \frac{(-1)^2 + (-1) + 1}{(-1)^2 - (-1) + 1} = \frac{1 - 1 + 1}{1 + 1 + 1} = \frac{1}{3} \] ### Step 5: Determine maximum and minimum values From the evaluations: - \( f(1) = 3 \) (maximum value) - \( f(-1) = \frac{1}{3} \) (minimum value) ### Conclusion The maximum value of \( f(x) \) is \( 3 \) and the minimum value is \( \frac{1}{3} \). ---
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE )|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)|17 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MEASURES OF CENTRAL TENDENCY

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-1)^(1) max[2-x,2,1+x] dx is

Let f" [1,2] to (-oo,oo) be given by f(x)=(x^(4)+3x^(2)+1)/(x^(2)+1) then find value of in [f_(max)]" in "[-1,2] where [.] is greatest integer function :

The function f(x) = min {|x|, sqrt(1-x^(2))}, -1lt x lt 1 possesses

Let f(x){sin pix , 0 le x le 2 and 2-x, 2 < x le 5, g(x) ={max(|x|, 1-|x|,|x-1|) if x in (0,1) and min(|x|, 1-|x|,|x-1|) otherwise. Then find f(g(x)).