Home
Class 12
MATHS
For all real values of x, the minimum v...

For all real values of x, the minimum value of `(1-x+x^2)/(1+x+x^2)`is(A) 0 (B) 1 (C) 3 (D) `1/3`

A

0

B

`1//3`

C

1

D

3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE )|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)|17 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MEASURES OF CENTRAL TENDENCY

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos

Similar Questions

Explore conceptually related problems

For all real values of x, the minimum value of (1-x+x^(2))/(1+x+x^(2)) is (A) 0 (B) 1 (B) 3 (D) (1)/(3)

For all real values of x, the maximum value of (1-x+x^(2))/(1+x+x^(2)) is :

Minimum value of x^(2)+(1)/(x^(2)+1)-3 is

Minimum value of x^(2)+(1)/(x^(2)+1)-3 is

For all real value of x, the maximum value of the expression (x)/(x^(2)-5x+9) is 1( b) 45(c)90 (d) None of these

Minimum value of f(x)=2x^(2)-4x+5 is 1 (b) -1(c)11 (d) 3

The sum of all real values of x satisfying the equation (x^2-5x+5)^(x^2+4x-60)=1 is: (A) 5 (B) 3 (C) -4 (D) 6