Home
Class 12
MATHS
Let f(x)=2x^3-3x^2-12 x+5 on [-2,\ 4] . ...

Let `f(x)=2x^3-3x^2-12 x+5` on `[-2,\ 4]` . The relative maximum occurs at `x=` `-2` (b) `-1` (c) 2 (d) 4

A

`-2`

B

`-1`

C

`2`

D

`4`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE )|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)|17 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MEASURES OF CENTRAL TENDENCY

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=2x^(3)-3x^(2)-12x+5 on [-2,4] The relative maximum occurs at x=-2 (b) -1(c)2(d)4

f(x)=2x^(3)+3x^(2)-12x+5 has maximum value at x^(=) …

Let f(x)=min{4x+1,x+2,-2x+4}. then the maximum value of f(x) is

Let f (x) = {{:(2-|x ^(2) +5x +6|, x ne -2),( b ^(2)+1, x =-2):} Has relative maximum at x =-2, then complete set of values b can take is:

f(x)=4x^(3)-12x^(2)+14x-3,g(x)=2x-1

Let f(x)=(x-a)^(2)+(x-b)^(2)+(x-c)^(2) Then,f(x) has a minimum at x=(a+b+c)/(3)(b)(1)/(2) (c) (1)/(8) (d) none of these

The function f(x)=2x^(3)-15x^(2)+36x+4 is maximum at x=(a)3(b)0(c)4(d)2

If f(x)=x^(4)tan(x^(3))-x ln(1+x^(2)), then the value of (d^(4)(f(x)))/(dx^(4)) at x=0 is 0(b)6(c)12 (d) 24

The largest value of 2x^(3)-3x^(2)-12x+5 for -2<=x<=4 occurs at x equals