Home
Class 12
MATHS
The largest value of 2x^3 - 3x^2 - 12x +...

The largest value of `2x^3 - 3x^2 - 12x + 5` for ` - 2 le x le 4` occurs at x =

A

`-2`

B

`-1`

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the largest value of the function \( f(x) = 2x^3 - 3x^2 - 12x + 5 \) for the interval \( -2 \leq x \leq 4 \), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(2x^3 - 3x^2 - 12x + 5) \] Using the power rule, we get: \[ f'(x) = 6x^2 - 6x - 12 \] ### Step 2: Set the derivative equal to zero To find the critical points, we set the derivative equal to zero: \[ 6x^2 - 6x - 12 = 0 \] Dividing the entire equation by 6 simplifies it: \[ x^2 - x - 2 = 0 \] ### Step 3: Factor the quadratic equation Next, we factor the quadratic equation: \[ (x - 2)(x + 1) = 0 \] ### Step 4: Solve for \( x \) Setting each factor to zero gives us the critical points: \[ x - 2 = 0 \quad \Rightarrow \quad x = 2 \] \[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \] ### Step 5: Evaluate the function at the critical points and endpoints Now we will evaluate the function at the critical points \( x = -1 \) and \( x = 2 \), as well as at the endpoints of the interval \( x = -2 \) and \( x = 4 \). 1. **At \( x = -2 \)**: \[ f(-2) = 2(-2)^3 - 3(-2)^2 - 12(-2) + 5 = 2(-8) - 3(4) + 24 + 5 = -16 - 12 + 24 + 5 = 1 \] 2. **At \( x = -1 \)**: \[ f(-1) = 2(-1)^3 - 3(-1)^2 - 12(-1) + 5 = 2(-1) - 3(1) + 12 + 5 = -2 - 3 + 12 + 5 = 12 \] 3. **At \( x = 2 \)**: \[ f(2) = 2(2)^3 - 3(2)^2 - 12(2) + 5 = 2(8) - 3(4) - 24 + 5 = 16 - 12 - 24 + 5 = -15 \] 4. **At \( x = 4 \)**: \[ f(4) = 2(4)^3 - 3(4)^2 - 12(4) + 5 = 2(64) - 3(16) - 48 + 5 = 128 - 48 - 48 + 5 = 37 \] ### Step 6: Compare the values Now we compare the values obtained: - \( f(-2) = 1 \) - \( f(-1) = 12 \) - \( f(2) = -15 \) - \( f(4) = 37 \) The largest value occurs at \( x = 4 \) with \( f(4) = 37 \). ### Conclusion The largest value of \( 2x^3 - 3x^2 - 12x + 5 \) for \( -2 \leq x \leq 4 \) occurs at \( x = 4 \). ---
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE )|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)|17 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MEASURES OF CENTRAL TENDENCY

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos

Similar Questions

Explore conceptually related problems

The largest value of 2x^(3)-3x^(2)-12x+5 for -2 le x le x2 occurs when

The largest value of 2x^(3)-3x^(2)-12x+5 for -2<=x<=4 occurs at x equals

2 le 3x - 4 le 5

The value of x if 0 le |2x + 3| le 3 belongs to

5 (2x - 7 ) -3 ( 2x + 3 ) le 0, 2x + 19 le 6x + 47

Find the solution set of -3x + 2 le 5 and 2x -5 le 7 .

The maximum value of Z = 3x + 5y subjected to the constraints x + y le 2, 4x + 3y le 12, x ge 0, y ge 0 is