Home
Class 12
MATHS
The minimum value of f(x) = abs(3-x) +...

The minimum value of
`f(x) = abs(3-x) + abs(2 + x) + abs(5-x)` is

A

7

B

10

C

8

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) = |3 - x| + |2 + x| + |5 - x| \), we will analyze the function by breaking it down into intervals based on the points where the expressions inside the absolute values change sign. The critical points are \( x = -2, 3, \) and \( 5 \). ### Step-by-Step Solution: 1. **Identify Critical Points**: The critical points where the expressions inside the absolute values change sign are \( x = -2, 3, \) and \( 5 \). 2. **Define Intervals**: We will consider the following intervals based on the critical points: - \( (-\infty, -2) \) - \( [-2, 3) \) - \( [3, 5) \) - \( [5, \infty) \) 3. **Evaluate \( f(x) \) in Each Interval**: - **Interval 1: \( x < -2 \)** Here, \( 3 - x > 0 \), \( 2 + x < 0 \), and \( 5 - x > 0 \). Therefore, \( f(x) = (3 - x) + (-(2 + x)) + (5 - x) = 3 - x - 2 - x + 5 - x = 6 - 3x \). - **Interval 2: \( -2 \leq x < 3 \)** Here, \( 3 - x > 0 \), \( 2 + x > 0 \), and \( 5 - x > 0 \). Therefore, \( f(x) = (3 - x) + (2 + x) + (5 - x) = 3 - x + 2 + x + 5 - x = 10 - x \). - **Interval 3: \( 3 \leq x < 5 \)** Here, \( 3 - x < 0 \), \( 2 + x > 0 \), and \( 5 - x > 0 \). Therefore, \( f(x) = (-(3 - x)) + (2 + x) + (5 - x) = -3 + x + 2 + x + 5 - x = 4 + x \). - **Interval 4: \( x \geq 5 \)** Here, \( 3 - x < 0 \), \( 2 + x > 0 \), and \( 5 - x < 0 \). Therefore, \( f(x) = (-(3 - x)) + (2 + x) + (-(5 - x)) = -3 + x + 2 - 5 + x = 2x - 6 \). 4. **Find Minimum Values at Critical Points**: Now we will evaluate \( f(x) \) at the critical points and at the boundaries of the intervals: - At \( x = -2 \): \( f(-2) = |3 - (-2)| + |2 + (-2)| + |5 - (-2)| = |5| + |0| + |7| = 5 + 0 + 7 = 12 \). - At \( x = 3 \): \( f(3) = |3 - 3| + |2 + 3| + |5 - 3| = |0| + |5| + |2| = 0 + 5 + 2 = 7 \). - At \( x = 5 \): \( f(5) = |3 - 5| + |2 + 5| + |5 - 5| = | -2 | + |7| + |0| = 2 + 7 + 0 = 9 \). 5. **Compare Values**: The values we computed are: - \( f(-2) = 12 \) - \( f(3) = 7 \) - \( f(5) = 9 \) The minimum value occurs at \( x = 3 \) where \( f(3) = 7 \). ### Conclusion: The minimum value of the function \( f(x) \) is \( \boxed{7} \).
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE )|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)|17 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MEASURES OF CENTRAL TENDENCY

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos

Similar Questions

Explore conceptually related problems

The minimum value of f(x)=|3-x|+|2+x|+|5-x| is

The minimum value of the expression abs(17x-8)-9 is

The minimum value of the expression abs(17x-8)-9 is :

Let f(x) = abs(x – 1) . Then :

The number of points where f(x)= abs(2x-1) -3abs(x+2)+abs(x^2+x-2) , ninR is not differentiable is

Number of elements in the range of f(x) = [abs(sinx) + abs(cosx)] is ____ _