Home
Class 12
MATHS
The set of values of lambda for which th...

The set of values of `lambda` for which the function `f(x) = (4lambda - 3) (x + log 5) + 2(lambda-7).cot"" (x)/2 sin^2 "" (x)/2` does not possess critical point is :

A

`[1, oo]`

B

`(2, oo)`

C

`(-oo,-4//3)`

D

`(-oo,-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the set of values of \( \lambda \) for which the function \[ f(x) = (4\lambda - 3)(x + \log 5) + 2(\lambda - 7) \cdot \frac{\cot\left(\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right)} \] does not possess critical points. A critical point occurs where the derivative of the function is zero or undefined. ### Step-by-Step Solution: 1. **Simplify the Function**: We start by rewriting the function \( f(x) \): \[ f(x) = (4\lambda - 3)(x + \log 5) + 2(\lambda - 7) \cdot \frac{\cot\left(\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right)} \] We can express \( \cot\left(\frac{x}{2}\right) \) in terms of sine and cosine: \[ \cot\left(\frac{x}{2}\right) = \frac{\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)} \] Thus, we have: \[ f(x) = (4\lambda - 3)(x + \log 5) + 2(\lambda - 7) \cdot \frac{\cos\left(\frac{x}{2}\right)}{\sin^3\left(\frac{x}{2}\right)} \] 2. **Find the Derivative**: We differentiate \( f(x) \): \[ f'(x) = (4\lambda - 3) + 2(\lambda - 7) \cdot \frac{d}{dx}\left(\frac{\cot\left(\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right)}\right) \] The derivative of \( \cot\left(\frac{x}{2}\right) \) is: \[ -\frac{1}{2}\csc^2\left(\frac{x}{2}\right) \] Thus, we have: \[ f'(x) = 4\lambda - 3 + (\lambda - 7) \cdot \cos\left(\frac{x}{2}\right) \cdot \left(-\frac{1}{2}\csc^2\left(\frac{x}{2}\right)\right) \] 3. **Set Derivative to Zero**: For critical points, we set \( f'(x) = 0 \): \[ 4\lambda - 3 + (\lambda - 7) \cdot \cos\left(\frac{x}{2}\right) = 0 \] Rearranging gives: \[ \cos\left(\frac{x}{2}\right) = \frac{3 - 4\lambda}{\lambda - 7} \] 4. **Analyze the Range of Cosine**: Since \( \cos\left(\frac{x}{2}\right) \) must be in the range \([-1, 1]\), we need: \[ -1 \leq \frac{3 - 4\lambda}{\lambda - 7} \leq 1 \] This gives us two inequalities to solve: - \( \frac{3 - 4\lambda}{\lambda - 7} \geq -1 \) - \( \frac{3 - 4\lambda}{\lambda - 7} \leq 1 \) 5. **Solve the Inequalities**: - For \( \frac{3 - 4\lambda}{\lambda - 7} \geq -1 \): \[ 3 - 4\lambda + \lambda - 7 \geq 0 \implies -3\lambda - 4 \geq 0 \implies \lambda \leq -\frac{4}{3} \] - For \( \frac{3 - 4\lambda}{\lambda - 7} \leq 1 \): \[ 3 - 4\lambda \leq \lambda - 7 \implies 10 \leq 5\lambda \implies \lambda \geq 2 \] 6. **Combine the Results**: From the inequalities, we have: - \( \lambda \leq -\frac{4}{3} \) - \( \lambda \geq 2 \) Thus, the set of values of \( \lambda \) for which the function does not possess critical points is: \[ (-\infty, -\frac{4}{3}] \cup [2, 7) \cup (7, \infty) \] ### Final Answer: The set of values of \( \lambda \) for which the function does not possess critical points is: \[ (-\infty, -\frac{4}{3}] \cup [2, 7) \cup (7, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE )|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)|17 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MEASURES OF CENTRAL TENDENCY

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos

Similar Questions

Explore conceptually related problems

The value of a for which the function f(x)=(4a-3)(x+log5)+2(a-7)(cot x)/(2)(sin^(2)x)/(2) does not possess critical points is (-oo,-(4)/(3)) (b) (-oo,-1)(c[1,oo)(d)(2,oo)

The set of values of lambda for which the equation "sin"^(4) x + "cos"^(4) x =lambda has a solution, is

The range of values of k for which the function f(x)=(2k-3)(x+tan2)+(k-1)(sin^(4)x+cos^(4)x) does not possess critical points is

The value of lambda for which the expression x^(3) + x^(2) - 5x + lambda will be divisible by (x - 2) is

The set of all values of lambda for which the systme of linear equations x-2y-2z = lambda x, x +2y +z = lambda y " and "-x-y = lambdaz has a non-trivial solution.

The value of lambda for which the equation lambda^2 - 4lambda + 3+ (lambda^2 + lambda -2)x + 6x^2 - 5x^3 =0 will have two roots equal to zero is

If range of the function f(x)=(2x^(2)+lambda)/(x^(2)+2) is (2,6] then (lambda)/(2) is-

The range of values of a for which the function f(x)=(a^2-7a+12)cosx+2(a-4)x+3e^5 does not process critical points is

The values of lambda for which the function f(x)=lambda x^(3)-2 lambda x^(2)+(lambda+1)x+3 lambda is increasing through out number line (a) lambda in(-3,3)( b) lambda in(-3,0)( c )lambda in(0,3) (d) lambda in(1,3)