If `y=y(x)` and `(2+sinx)/(y+1) ((dy)/(dx))= - cos x, y(0)=1`, then `y(pi//2)` equals
A
`1//3`
B
`2//3`
C
`-1//3`
D
1
Text Solution
AI Generated Solution
The correct Answer is:
To solve the differential equation given by
\[
\frac{2 + \sin x}{y + 1} \frac{dy}{dx} = -\cos x
\]
with the initial condition \( y(0) = 1 \), we will follow these steps:
### Step 1: Separate the Variables
We start by rearranging the equation to separate the variables \( y \) and \( x \):
\[
\frac{dy}{dx} = -\frac{\cos x (y + 1)}{2 + \sin x}
\]
Now, we can separate the variables:
\[
\frac{dy}{y + 1} = -\frac{\cos x}{2 + \sin x} dx
\]
### Step 2: Integrate Both Sides
Next, we integrate both sides:
\[
\int \frac{dy}{y + 1} = \int -\frac{\cos x}{2 + \sin x} dx
\]
The left-hand side integrates to:
\[
\ln |y + 1| + C_1
\]
For the right-hand side, we can use substitution. Let \( u = 2 + \sin x \), then \( du = \cos x dx \). This gives us:
\[
\int -\frac{1}{u} du = -\ln |u| + C_2 = -\ln |2 + \sin x| + C_2
\]
Thus, we have:
\[
\ln |y + 1| = -\ln |2 + \sin x| + C
\]
### Step 3: Simplify the Equation
Exponentiating both sides, we get:
\[
|y + 1| = \frac{C}{2 + \sin x}
\]
We can drop the absolute value since \( y + 1 \) will be positive given the initial condition. Therefore, we have:
\[
y + 1 = \frac{C}{2 + \sin x}
\]
### Step 4: Apply the Initial Condition
Using the initial condition \( y(0) = 1 \):
\[
1 + 1 = \frac{C}{2 + \sin(0)}
\]
This simplifies to:
\[
2 = \frac{C}{2}
\]
Thus, \( C = 4 \). Now substituting back into our equation, we have:
\[
y + 1 = \frac{4}{2 + \sin x}
\]
### Step 5: Solve for \( y \)
Rearranging gives us:
\[
y = \frac{4}{2 + \sin x} - 1
\]
### Step 6: Find \( y\left(\frac{\pi}{2}\right) \)
Now we need to find \( y\left(\frac{\pi}{2}\right) \):
\[
y\left(\frac{\pi}{2}\right) = \frac{4}{2 + \sin\left(\frac{\pi}{2}\right)} - 1
\]
Since \( \sin\left(\frac{\pi}{2}\right) = 1 \):
\[
y\left(\frac{\pi}{2}\right) = \frac{4}{2 + 1} - 1 = \frac{4}{3} - 1 = \frac{4 - 3}{3} = \frac{1}{3}
\]
Thus, the final answer is:
\[
\boxed{\frac{1}{3}}
\]
Topper's Solved these Questions
DIFFERENTIAL EQUATIONS
ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE)|8 Videos
DIFFERENTIAL EQUATIONS
ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS)|9 Videos
DETERMINANTS
ML KHANNA|Exercise Self Assessment Test |19 Videos
DIFFERENTIATION
ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
Similar Questions
Explore conceptually related problems
If y=y(x) and (2+sin x)/(y+1)((dy)/(dx))=-cos x,y(0)=1, then y((pi)/(2)) equals
if y=y(x) and (2+sin x)/(y+1)((dy)/(dx))=-cos x,y(0)=1, then y((pi)/(2))=
If y=y(x) and ((2+sinx)/(y+1))dy/dx=-cosx, y(0)=1 , then y(pi/2) equals (A) 1/3 (B) 2/3 (C) -1/3 (D) 1
If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to
If (2+sinx)(dy)/(dx)+(y+1)cosx=0 and y(0)=1 , then y((pi)/(2)) is equal to
If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to :
If (2+sinx)(dy)/(dx)+(y+1)cosx=0andy(0)=1, then y((pi)/(2)) is equal to
ML KHANNA-DIFFERENTIAL EQUATIONS-MISCELLANEOUS EXERCISE (Matching Entries)