Home
Class 12
MATHS
If y=y(x) and (2+sinx)/(y+1) ((dy)/(dx))...

If `y=y(x)` and `(2+sinx)/(y+1) ((dy)/(dx))= - cos x, y(0)=1`, then `y(pi//2)` equals

A

`1//3`

B

`2//3`

C

`-1//3`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \[ \frac{2 + \sin x}{y + 1} \frac{dy}{dx} = -\cos x \] with the initial condition \( y(0) = 1 \), we will follow these steps: ### Step 1: Separate the Variables We start by rearranging the equation to separate the variables \( y \) and \( x \): \[ \frac{dy}{dx} = -\frac{\cos x (y + 1)}{2 + \sin x} \] Now, we can separate the variables: \[ \frac{dy}{y + 1} = -\frac{\cos x}{2 + \sin x} dx \] ### Step 2: Integrate Both Sides Next, we integrate both sides: \[ \int \frac{dy}{y + 1} = \int -\frac{\cos x}{2 + \sin x} dx \] The left-hand side integrates to: \[ \ln |y + 1| + C_1 \] For the right-hand side, we can use substitution. Let \( u = 2 + \sin x \), then \( du = \cos x dx \). This gives us: \[ \int -\frac{1}{u} du = -\ln |u| + C_2 = -\ln |2 + \sin x| + C_2 \] Thus, we have: \[ \ln |y + 1| = -\ln |2 + \sin x| + C \] ### Step 3: Simplify the Equation Exponentiating both sides, we get: \[ |y + 1| = \frac{C}{2 + \sin x} \] We can drop the absolute value since \( y + 1 \) will be positive given the initial condition. Therefore, we have: \[ y + 1 = \frac{C}{2 + \sin x} \] ### Step 4: Apply the Initial Condition Using the initial condition \( y(0) = 1 \): \[ 1 + 1 = \frac{C}{2 + \sin(0)} \] This simplifies to: \[ 2 = \frac{C}{2} \] Thus, \( C = 4 \). Now substituting back into our equation, we have: \[ y + 1 = \frac{4}{2 + \sin x} \] ### Step 5: Solve for \( y \) Rearranging gives us: \[ y = \frac{4}{2 + \sin x} - 1 \] ### Step 6: Find \( y\left(\frac{\pi}{2}\right) \) Now we need to find \( y\left(\frac{\pi}{2}\right) \): \[ y\left(\frac{\pi}{2}\right) = \frac{4}{2 + \sin\left(\frac{\pi}{2}\right)} - 1 \] Since \( \sin\left(\frac{\pi}{2}\right) = 1 \): \[ y\left(\frac{\pi}{2}\right) = \frac{4}{2 + 1} - 1 = \frac{4}{3} - 1 = \frac{4 - 3}{3} = \frac{1}{3} \] Thus, the final answer is: \[ \boxed{\frac{1}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE)|8 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS)|9 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos

Similar Questions

Explore conceptually related problems

If y=y(x) and (2+sin x)/(y+1)((dy)/(dx))=-cos x,y(0)=1, then y((pi)/(2)) equals

if y=y(x) and (2+sin x)/(y+1)((dy)/(dx))=-cos x,y(0)=1, then y((pi)/(2))=

If y=y(x) and ((2+sinx)/(y+1))dy/dx=-cosx, y(0)=1 , then y(pi/2) equals (A) 1/3 (B) 2/3 (C) -1/3 (D) 1

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to

If (2+sinx)(dy)/(dx)+(y+1)cosx=0 and y(0)=1 , then y((pi)/(2)) is equal to

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to :

If (2+sinx)(dy)/(dx)+(y+1)cosx=0andy(0)=1, then y((pi)/(2)) is equal to