Home
Class 12
MATHS
The solution of the equation (x^(2)+...

The solution of the equation
`(x^(2)+xy) dy = (x^(2)+y^(2))dx ` is

A

`log x =log(x-y) +(y)/(x)+c`

B

`log x =2 log (x-y) +(y)/(x) +c`

C

`log x =log(x-y) +(x)/(y) +c`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \((x^2 + xy) dy = (x^2 + y^2) dx\), we will follow these steps: ### Step 1: Rearranging the Equation We start by rewriting the given equation in the standard form: \[ \frac{dy}{dx} = \frac{x^2 + y^2}{x^2 + xy} \] ### Step 2: Dividing by \(x^2\) Next, we divide both the numerator and the denominator by \(x^2\): \[ \frac{dy}{dx} = \frac{1 + \left(\frac{y}{x}\right)^2}{1 + \frac{y}{x}} \] Let \(v = \frac{y}{x}\), which implies \(y = vx\). ### Step 3: Differentiating \(y\) Differentiating \(y\) with respect to \(x\) gives: \[ \frac{dy}{dx} = v + x \frac{dv}{dx} \] ### Step 4: Substituting into the Equation Now substitute \(y = vx\) and \(\frac{dy}{dx}\) into the rearranged equation: \[ v + x \frac{dv}{dx} = \frac{1 + v^2}{1 + v} \] ### Step 5: Rearranging Terms Rearranging gives: \[ x \frac{dv}{dx} = \frac{1 + v^2}{1 + v} - v \] Simplifying the right-hand side: \[ x \frac{dv}{dx} = \frac{1 + v^2 - v(1 + v)}{1 + v} = \frac{1 + v^2 - v - v^2}{1 + v} = \frac{1 - v}{1 + v} \] ### Step 6: Separating Variables Now we separate the variables: \[ \frac{1 + v}{1 - v} dv = \frac{dx}{x} \] ### Step 7: Integrating Both Sides Integrating both sides: \[ \int \frac{1 + v}{1 - v} dv = \int \frac{dx}{x} \] The left side can be split: \[ \int \left(-1 + \frac{2}{1 - v}\right) dv = \ln |x| + C \] Thus, we have: \[ -v + 2 \ln |1 - v| = \ln |x| + C \] ### Step 8: Back Substituting for \(v\) Substituting back \(v = \frac{y}{x}\): \[ -\frac{y}{x} + 2 \ln \left|1 - \frac{y}{x}\right| = \ln |x| + C \] ### Step 9: Rearranging the Equation Rearranging gives: \[ 2 \ln \left|1 - \frac{y}{x}\right| = \ln |x| + C + \frac{y}{x} \] ### Step 10: Exponentiating Exponentiating both sides to eliminate the logarithm: \[ \left|1 - \frac{y}{x}\right|^2 = K \cdot |x| e^{\frac{y}{x}} \] where \(K = e^C\). ### Final Form Thus, the solution to the differential equation is: \[ \left|1 - \frac{y}{x}\right|^2 = K \cdot |x| e^{\frac{y}{x}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE)|8 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS)|9 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos

Similar Questions

Explore conceptually related problems

The solution of (x^(2)+xy)dy=(x^(2)+y^(2))dx is

Solution of the equation (1-x^(2))dy+xydx=xy^(2)dx is

Find the particular solution of the differential equation ;(x^(2)+xy)dy=(x^(2)+y^(2))dx given that y=0 when x=1

The solution of differential equation (1-xy + x^(2) y^(2))dx = x^(2) dy is

The solution of differential equation y^(2)dx+(x^(2)-xy-y^(2))dy=0 is

The solution of the differential equation x^(2) (dy)/(dx)= x^(2) + xy + y^(2)

The solution of the differential equation ( 3xy +y^(2)) dx + (x^(2) +xy)dy = 0 is