Home
Class 12
MATHS
If x(dy)/(dx)=y(log y-log x+1), then the...

If `x(dy)/(dx)=y(log y-log x+1)`, then the solution of the equation is

A

`"log"(x)/(y)=cy`

B

`"log"(y)/(x)=cy`

C

`"log"(x)/(y)=cx`

D

`"log"(y)/(x)=cx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( x \frac{dy}{dx} = y (\log y - \log x + 1) \), we will follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ x \frac{dy}{dx} = y (\log y - \log x + 1) \] We can rearrange it to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{y}{x} (\log y - \log x + 1) \] ### Step 2: Using Logarithmic Properties Using the property of logarithms, we can rewrite \( \log y - \log x \) as \( \log \frac{y}{x} \): \[ \frac{dy}{dx} = \frac{y}{x} \left( \log \frac{y}{x} + 1 \right) \] ### Step 3: Substituting \( y = vx \) Let’s make the substitution \( y = vx \), where \( v \) is a function of \( x \). Then, we have: \[ \frac{dy}{dx} = v + x \frac{dv}{dx} \] Substituting this into our equation gives: \[ v + x \frac{dv}{dx} = \frac{vx}{x} \left( \log v + 1 \right) \] This simplifies to: \[ v + x \frac{dv}{dx} = v (\log v + 1) \] ### Step 4: Rearranging the Equation Now we can rearrange this equation: \[ x \frac{dv}{dx} = v (\log v + 1 - 1) = v \log v \] This can be expressed as: \[ x \frac{dv}{dx} = v \log v \] ### Step 5: Separating Variables We can separate the variables: \[ \frac{dv}{v \log v} = \frac{dx}{x} \] ### Step 6: Integrating Both Sides Now we integrate both sides: \[ \int \frac{dv}{v \log v} = \int \frac{dx}{x} \] The integral on the right side is straightforward: \[ \int \frac{dx}{x} = \log x + C \] For the left side, we use the substitution \( u = \log v \), which gives \( dv = v du \): \[ \int \frac{1}{u} du = \log (\log v) + C_1 \] ### Step 7: Combining Results After integration, we have: \[ \log (\log v) = \log x + C \] Exponentiating both sides gives: \[ \log v = Cx \] Exponentiating again results in: \[ v = e^{Cx} \] ### Step 8: Substituting Back for \( y \) Recall that \( y = vx \): \[ y = e^{Cx} x \] Thus, we can express the solution as: \[ y = Cx e^{Cx} \] ### Final Solution The solution of the differential equation is: \[ y = Cx e^{Cx} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE)|8 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS)|9 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos

Similar Questions

Explore conceptually related problems

If x(dy)/(dx)=y(log y -logx+1), then the solution of the equation is

If x(dy)/(dx)=y(log_(e)y-log_(e)x+1) ,then solution of the equation is

IF y' = y/x(log y - log x+1), then the solution of the equation is :

If x dy/dx=y(logy-logx+1) , then the solution of the differential equation is (A) log(x/y)=Cy (B) log(y/x)=Cy (C) log(x/y)=Cx (D) log(y/x)=Cx

solve x((dy)/(dx))=y(log y-log x+1)

(dy)/(dx)=(x+y)ln(x+y)-1

If y= e^(log (log x )) ,then (dy)/(dx) =

Solution of the equation x (dy)/(dx) = y log y is