Home
Class 12
MATHS
(x^(2)+y^(2))dy=xy dx. If y(x(0))=e, y(1...

`(x^(2)+y^(2))dy=xy dx`. If `y(x_(0))=e, y(1)=1`, then value of `x_(0)=`

A

`sqrt(3)e`

B

`sqrt(e^(2)-(1)/(2))`

C

`sqrt((e^(2)-1)/(2))`

D

`sqrt((e^(2)+1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \((x^2 + y^2)dy = xy dx\) given the conditions \(y(x_0) = e\) and \(y(1) = 1\), we will follow these steps: ### Step 1: Rewrite the Differential Equation We start with the equation: \[ (x^2 + y^2) dy = xy dx \] We can rewrite this as: \[ \frac{dy}{dx} = \frac{xy}{x^2 + y^2} \] ### Step 2: Substitute \(y = vx\) Let \(y = vx\), where \(v\) is a function of \(x\). Then, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = v + x \frac{dv}{dx} \] Substituting \(y = vx\) into the equation gives: \[ \frac{dy}{dx} = \frac{x(vx)}{x^2 + (vx)^2} = \frac{vx^2}{x^2 + v^2x^2} = \frac{vx^2}{x^2(1 + v^2)} = \frac{v}{1 + v^2} \] ### Step 3: Set Up the Equation Now we have: \[ v + x \frac{dv}{dx} = \frac{v}{1 + v^2} \] Rearranging gives: \[ x \frac{dv}{dx} = \frac{v}{1 + v^2} - v \] \[ x \frac{dv}{dx} = v \left( \frac{1 - (1 + v^2)}{1 + v^2} \right) = v \left( \frac{-v^2}{1 + v^2} \right) \] Thus: \[ \frac{dv}{v} = -\frac{v^2}{x} dx \] ### Step 4: Separate Variables Separating variables gives: \[ \frac{1}{v^2} dv = -\frac{1}{x} dx \] ### Step 5: Integrate Both Sides Integrating both sides: \[ \int \frac{1}{v^2} dv = \int -\frac{1}{x} dx \] This results in: \[ -\frac{1}{v} = -\ln|x| + C \] or: \[ \frac{1}{v} = \ln|x| + C \] ### Step 6: Substitute Back for \(y\) Since \(v = \frac{y}{x}\), we have: \[ \frac{x}{y} = \ln|x| + C \implies y = \frac{x}{\ln|x| + C} \] ### Step 7: Use Initial Condition \(y(1) = 1\) Substituting \(x = 1\) and \(y = 1\): \[ 1 = \frac{1}{\ln(1) + C} \implies 1 = \frac{1}{0 + C} \implies C = 1 \] Thus, the equation becomes: \[ y = \frac{x}{\ln|x| + 1} \] ### Step 8: Use Condition \(y(x_0) = e\) Now we substitute \(y = e\): \[ e = \frac{x_0}{\ln|x_0| + 1} \] This leads to: \[ e(\ln|x_0| + 1) = x_0 \] Rearranging gives: \[ e \ln|x_0| + e - x_0 = 0 \] ### Step 9: Solve for \(x_0\) This is a transcendental equation, and we can use numerical methods or trial and error to find \(x_0\). We can test values: - For \(x_0 = 3\): \[ e \ln(3) + e - 3 \approx 2.718 \cdot 1.0986 + 2.718 - 3 \approx 2.98 - 3 \approx -0.02 \] - For \(x_0 = 4\): \[ e \ln(4) + e - 4 \approx 2.718 \cdot 1.3863 + 2.718 - 4 \approx 3.77 - 4 \approx -0.23 \] - For \(x_0 = 2\): \[ e \ln(2) + e - 2 \approx 2.718 \cdot 0.6931 + 2.718 - 2 \approx 1.88 + 2.718 - 2 \approx 2.6 \] By further refining, we find: - For \(x_0 = 2.5\): \[ e \ln(2.5) + e - 2.5 \approx 2.718 \cdot 0.9163 + 2.718 - 2.5 \approx 2.49 - 2.5 \approx -0.01 \] Thus, we find that \(x_0\) is approximately \(2.5\). ### Final Answer The value of \(x_0\) is approximately \(2.5\).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE)|8 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS)|9 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos

Similar Questions

Explore conceptually related problems

If (2xy-y^(2)-y)dx = (2xy+x-x^(2))dy and y(1)=1 ,then the value of y(-1) is

Let y = y(x) be the solution of the differential equation e^(x)sqrt(1-y^(2))dx+((y)/(x))dy=0,y(1)=-1 . Then the value of (y(3))^(2) is equal to :

If 2x^2dy + (e^y-2x)dx=0 and y(e)=1 then find the value of y(1)

x^2dy+(y-1/x)dx=0 at y(1)=1 then find the value of y(1/2)

If y = y (x) is the solution of the differential equation (5 + e^(x))/(2 + y) * (dy)/(dx) + e^(x) = 0 satisfying y(0) = 1 , then a value of y (log _(e) 13) is :

If (y^(3)-2x^(2)y)dx+(2xy^(2)-x^(3))dy=0, then the value of xysqrt(y^(2)-x^(2)), is

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

If y(x) is a solution of (dy)/(dx)-(xy)/(1+x)=(1)/(1+x) and y(0)=-1 , then the value of y(2) is