`(x^(2)+y^(2))dy=xy dx`. If `y(x_(0))=e, y(1)=1`, then value of `x_(0)=`
A
`sqrt(3)e`
B
`sqrt(e^(2)-(1)/(2))`
C
`sqrt((e^(2)-1)/(2))`
D
`sqrt((e^(2)+1)/(2))`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the differential equation \((x^2 + y^2)dy = xy dx\) given the conditions \(y(x_0) = e\) and \(y(1) = 1\), we will follow these steps:
### Step 1: Rewrite the Differential Equation
We start with the equation:
\[
(x^2 + y^2) dy = xy dx
\]
We can rewrite this as:
\[
\frac{dy}{dx} = \frac{xy}{x^2 + y^2}
\]
### Step 2: Substitute \(y = vx\)
Let \(y = vx\), where \(v\) is a function of \(x\). Then, we differentiate \(y\) with respect to \(x\):
\[
\frac{dy}{dx} = v + x \frac{dv}{dx}
\]
Substituting \(y = vx\) into the equation gives:
\[
\frac{dy}{dx} = \frac{x(vx)}{x^2 + (vx)^2} = \frac{vx^2}{x^2 + v^2x^2} = \frac{vx^2}{x^2(1 + v^2)} = \frac{v}{1 + v^2}
\]
### Step 3: Set Up the Equation
Now we have:
\[
v + x \frac{dv}{dx} = \frac{v}{1 + v^2}
\]
Rearranging gives:
\[
x \frac{dv}{dx} = \frac{v}{1 + v^2} - v
\]
\[
x \frac{dv}{dx} = v \left( \frac{1 - (1 + v^2)}{1 + v^2} \right) = v \left( \frac{-v^2}{1 + v^2} \right)
\]
Thus:
\[
\frac{dv}{v} = -\frac{v^2}{x} dx
\]
### Step 4: Separate Variables
Separating variables gives:
\[
\frac{1}{v^2} dv = -\frac{1}{x} dx
\]
### Step 5: Integrate Both Sides
Integrating both sides:
\[
\int \frac{1}{v^2} dv = \int -\frac{1}{x} dx
\]
This results in:
\[
-\frac{1}{v} = -\ln|x| + C
\]
or:
\[
\frac{1}{v} = \ln|x| + C
\]
### Step 6: Substitute Back for \(y\)
Since \(v = \frac{y}{x}\), we have:
\[
\frac{x}{y} = \ln|x| + C \implies y = \frac{x}{\ln|x| + C}
\]
### Step 7: Use Initial Condition \(y(1) = 1\)
Substituting \(x = 1\) and \(y = 1\):
\[
1 = \frac{1}{\ln(1) + C} \implies 1 = \frac{1}{0 + C} \implies C = 1
\]
Thus, the equation becomes:
\[
y = \frac{x}{\ln|x| + 1}
\]
### Step 8: Use Condition \(y(x_0) = e\)
Now we substitute \(y = e\):
\[
e = \frac{x_0}{\ln|x_0| + 1}
\]
This leads to:
\[
e(\ln|x_0| + 1) = x_0
\]
Rearranging gives:
\[
e \ln|x_0| + e - x_0 = 0
\]
### Step 9: Solve for \(x_0\)
This is a transcendental equation, and we can use numerical methods or trial and error to find \(x_0\). We can test values:
- For \(x_0 = 3\):
\[
e \ln(3) + e - 3 \approx 2.718 \cdot 1.0986 + 2.718 - 3 \approx 2.98 - 3 \approx -0.02
\]
- For \(x_0 = 4\):
\[
e \ln(4) + e - 4 \approx 2.718 \cdot 1.3863 + 2.718 - 4 \approx 3.77 - 4 \approx -0.23
\]
- For \(x_0 = 2\):
\[
e \ln(2) + e - 2 \approx 2.718 \cdot 0.6931 + 2.718 - 2 \approx 1.88 + 2.718 - 2 \approx 2.6
\]
By further refining, we find:
- For \(x_0 = 2.5\):
\[
e \ln(2.5) + e - 2.5 \approx 2.718 \cdot 0.9163 + 2.718 - 2.5 \approx 2.49 - 2.5 \approx -0.01
\]
Thus, we find that \(x_0\) is approximately \(2.5\).
### Final Answer
The value of \(x_0\) is approximately \(2.5\).
Topper's Solved these Questions
DIFFERENTIAL EQUATIONS
ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE)|8 Videos
DIFFERENTIAL EQUATIONS
ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS)|9 Videos
DETERMINANTS
ML KHANNA|Exercise Self Assessment Test |19 Videos
DIFFERENTIATION
ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
Similar Questions
Explore conceptually related problems
If (2xy-y^(2)-y)dx = (2xy+x-x^(2))dy and y(1)=1 ,then the value of y(-1) is
Let y = y(x) be the solution of the differential equation e^(x)sqrt(1-y^(2))dx+((y)/(x))dy=0,y(1)=-1 . Then the value of (y(3))^(2) is equal to :
If 2x^2dy + (e^y-2x)dx=0 and y(e)=1 then find the value of y(1)
x^2dy+(y-1/x)dx=0 at y(1)=1 then find the value of y(1/2)
If y = y (x) is the solution of the differential equation (5 + e^(x))/(2 + y) * (dy)/(dx) + e^(x) = 0 satisfying y(0) = 1 , then a value of y (log _(e) 13) is :
If (y^(3)-2x^(2)y)dx+(2xy^(2)-x^(3))dy=0, then the value of xysqrt(y^(2)-x^(2)), is
if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))
If y(x) is a solution of (dy)/(dx)-(xy)/(1+x)=(1)/(1+x) and y(0)=-1 , then the value of y(2) is
ML KHANNA-DIFFERENTIAL EQUATIONS-MISCELLANEOUS EXERCISE (Matching Entries)