Home
Class 12
MATHS
If x^(2)(dy)/(dx)=(y(x+y))/(2), then (y...

If `x^(2)(dy)/(dx)=(y(x+y))/(2)`, then ` (y-x)^(2) =k x^(2)y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \[ x^2 \frac{dy}{dx} = \frac{y(x+y)}{2}, \] we will follow these steps: ### Step 1: Rearranging the Equation First, we can rearrange the equation to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{y(x+y)}{2x^2}. \] ### Step 2: Substituting \(y = vx\) Next, we will use the substitution \(y = vx\), where \(v\) is a function of \(x\). Then, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = v + x \frac{dv}{dx}. \] ### Step 3: Substitute into the Equation Substituting \(y = vx\) and \(\frac{dy}{dx}\) into the rearranged equation gives: \[ v + x \frac{dv}{dx} = \frac{vx(x + vx)}{2x^2}. \] This simplifies to: \[ v + x \frac{dv}{dx} = \frac{v(x + vx)}{2x}. \] ### Step 4: Simplifying the Right Side Now, simplifying the right-hand side: \[ \frac{v(x + vx)}{2x} = \frac{vx + vvx}{2x} = \frac{v}{2}(1 + v). \] ### Step 5: Rearranging the Equation Now we have: \[ v + x \frac{dv}{dx} = \frac{v}{2}(1 + v). \] Rearranging gives: \[ x \frac{dv}{dx} = \frac{v}{2}(1 + v) - v = v\left(\frac{1 + v}{2} - 1\right) = v\left(\frac{v - 1}{2}\right). \] ### Step 6: Separating Variables Now we can separate the variables: \[ \frac{2}{v(v-1)} dv = \frac{dx}{x}. \] ### Step 7: Integrating Both Sides Integrating both sides: \[ \int \frac{2}{v(v-1)} dv = \int \frac{dx}{x}. \] Using partial fractions on the left side: \[ \frac{2}{v(v-1)} = \frac{2}{v} + \frac{2}{1-v}. \] Integrating gives: \[ 2 \ln |v| - 2 \ln |1-v| = \ln |x| + C. \] ### Step 8: Simplifying the Result This simplifies to: \[ \ln \left|\frac{v^2}{1-v}\right| = \ln |x| + C. \] Exponentiating both sides leads to: \[ \frac{v^2}{1-v} = kx, \] where \(k = e^C\). ### Step 9: Substituting Back for \(y\) Recall \(v = \frac{y}{x}\), so substituting back gives: \[ \frac{\left(\frac{y}{x}\right)^2}{1 - \frac{y}{x}} = kx. \] Multiplying through by \(x^2(1 - \frac{y}{x})\) leads to: \[ y^2 = kx^2y - kx^3. \] ### Step 10: Rearranging to the Required Form Rearranging gives: \[ (y - x)^2 = kx^2y. \] Thus, we have shown that the solution to the differential equation is indeed of the form: \[ (y - x)^2 = kx^2y. \] ### Conclusion Therefore, the statement is true. ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS)|9 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos

Similar Questions

Explore conceptually related problems

x(dy)/(dx)+(y^(2))/(x)=y

(2x+y)(dy)/(dx)=x+2y=

(dy)/(dx)-(y)/(x)=2x^(2)

(dy)/(dx)=(x+y+1)/(2x+2y+3)

(dy)/(dx)=(x^2y+y)/(xy^2+x)

(dy)/(dx)=(x-y+3)/(2x-2y+5)

(dy)/(dx)=(x+y+7)/(2x+2y+3)

x(dy)/(dx)-y=2x^(2)y

dy/dx=(x-2y)/(2x+y)

dy/dx=(x+2y)/(2x+y)