Home
Class 12
MATHS
If xy(dy)/(dx) =(1+y^(2))/(1+x^(2)) (1+...

If `xy(dy)/(dx) =(1+y^(2))/(1+x^(2)) (1+x+x^(2))`, then its solution is …………….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \[ xy \frac{dy}{dx} = \frac{1+y^2}{1+x^2} (1+x+x^2), \] we will follow the steps of separation of variables and integration. ### Step 1: Separate the Variables We start by rearranging the equation to separate the variables \(y\) and \(x\): \[ xy \frac{dy}{dx} = \frac{(1+y^2)(1+x+x^2)}{1+x^2}. \] We can rewrite this as: \[ \frac{1+y^2}{y} dy = \frac{(1+x+x^2)}{x(1+x^2)} dx. \] ### Step 2: Simplify Each Side Now, we simplify both sides: - Left-hand side (LHS): \[ \frac{1+y^2}{y} dy = \left(\frac{1}{y} + y\right) dy. \] - Right-hand side (RHS): \[ \frac{(1+x+x^2)}{x(1+x^2)} dx = \left(\frac{1}{x} + \frac{1}{1+x^2}\right) dx. \] ### Step 3: Integrate Both Sides Now we integrate both sides: 1. **Integrating LHS**: \[ \int \left(\frac{1}{y} + y\right) dy = \int \frac{1}{y} dy + \int y dy = \ln |y| + \frac{y^2}{2} + C_1. \] 2. **Integrating RHS**: \[ \int \left(\frac{1}{x} + \frac{1}{1+x^2}\right) dx = \int \frac{1}{x} dx + \int \frac{1}{1+x^2} dx = \ln |x| + \tan^{-1}(x) + C_2. \] ### Step 4: Combine the Results Equating the results from both integrations, we have: \[ \ln |y| + \frac{y^2}{2} = \ln |x| + \tan^{-1}(x) + C, \] where \(C = C_2 - C_1\) is a constant. ### Step 5: Final Form To express this in a more standard form, we can rearrange it: \[ \ln |y| = \ln |x| + \tan^{-1}(x) + C - \frac{y^2}{2}. \] This is the implicit solution of the given differential equation.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |9 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE)|8 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx) = (2xy)/(x^(2)-1-2y)

(dy)/(dx)-(xy)/(1-x^(2))=(1)/(1-x^(2))

The solution of the differential equation xy(dy)/(dx)=((1+y^(2))(1+x+x^(2)))/(1+x^(2)) is:

If (dy)/dx = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

Find (dy)/(dx) of x^(2)+xy+cos^(2)y=1

(1-xy+x^(2)y^(2))dx=x^(2)dy

y(xy+1)dx+x(1+xy+x^(2)y^(2))dy=0