Home
Class 12
MATHS
If (dy)/(dx)=(y(x-y))/(x(x+y)), then sol...

If `(dy)/(dx)=(y(x-y))/(x(x+y))`, then solution of the diff. equation is ……….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \[ \frac{dy}{dx} = \frac{y(x-y)}{x(x+y)}, \] we will use the substitution \( y = vx \), where \( v \) is a function of \( x \). This substitution helps us express \( y \) in terms of \( x \) and \( v \). ### Step-by-Step Solution: 1. **Substitute \( y = vx \)**: \[ \frac{dy}{dx} = v + x\frac{dv}{dx}. \] Here, \( \frac{dy}{dx} \) is expressed using the product rule. 2. **Substitute into the original equation**: Replace \( y \) in the original equation: \[ v + x\frac{dv}{dx} = \frac{vx(x - vx)}{x(x + vx)}. \] 3. **Simplify the right-hand side**: The right-hand side simplifies as follows: \[ \frac{vx(x - vx)}{x(x + vx)} = \frac{v(x - vx)}{x + vx} = \frac{v(x(1 - v))}{x(1 + v)} = \frac{v(1 - v)}{1 + v}. \] 4. **Set the equation**: Now we have: \[ v + x\frac{dv}{dx} = \frac{v(1 - v)}{1 + v}. \] 5. **Rearranging the equation**: Rearranging gives: \[ x\frac{dv}{dx} = \frac{v(1 - v)}{1 + v} - v. \] Simplifying the right-hand side: \[ x\frac{dv}{dx} = \frac{v(1 - v) - v(1 + v)}{1 + v} = \frac{v(1 - v - 1 - v)}{1 + v} = \frac{-v^2}{1 + v}. \] 6. **Separate variables**: This can be rewritten as: \[ \frac{1 + v}{-v^2} dv = \frac{1}{x} dx. \] 7. **Integrate both sides**: Integrating both sides: \[ \int \frac{1 + v}{-v^2} dv = \int \frac{1}{x} dx. \] The left-hand side can be split: \[ \int \left(-\frac{1}{v} - \frac{1}{v^2}\right) dv = \ln |x| + C. \] This gives: \[ -\ln |v| + \frac{1}{v} = \ln |x| + C. \] 8. **Back substitute \( v = \frac{y}{x} \)**: Replace \( v \) back: \[ -\ln \left|\frac{y}{x}\right| + \frac{x}{y} = \ln |x| + C. \] 9. **Final form**: Rearranging gives the implicit solution of the differential equation.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |9 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE)|8 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos

Similar Questions

Explore conceptually related problems

If x(dy)/(dx)=y(log y -logx+1), then the solution of the equation is

The solution of the differential equation x+y(dy)/(dx)=2y is

The solution of the differential equation x(dy)/(dx)+y = y^2 is

The solution of differential equation x(dy)/(dx)=y is :

If y_(1)(x) is a solution of the differential equation (dy)/(dx)-f(x)y = 0 , then a solution of the differential equation (dy)/(dx) + f(x) y = r(x) is