Home
Class 12
MATHS
Solution of diff. eqn. "tan"y (dy)/(dx)...

Solution of diff. eqn. ` "tan"y (dy)/(dx) +tanx = cosy cos^(3)x` is …………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( \tan y \frac{dy}{dx} + \tan x = \cos y \cos^3 x \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \tan y \frac{dy}{dx} + \tan x = \cos y \cos^3 x \] We can rearrange it to isolate the derivative term: \[ \tan y \frac{dy}{dx} = \cos y \cos^3 x - \tan x \] ### Step 2: Divide through by \( \cos y \) Next, we divide the entire equation by \( \cos y \): \[ \frac{\tan y}{\cos y} \frac{dy}{dx} = \cos^2 x - \frac{\tan x}{\cos y} \] This simplifies to: \[ \sec y \frac{dy}{dx} = \cos^2 x - \sec y \tan x \] ### Step 3: Substitute \( v = \sec y \) Let’s make the substitution \( v = \sec y \). Then, differentiating \( v \) with respect to \( x \) gives: \[ \frac{dv}{dx} = \sec y \tan y \frac{dy}{dx} \] Thus, we can rewrite our equation as: \[ \frac{dv}{dx} = \cos^2 x - v \tan x \] ### Step 4: Rearranging into standard form Now we can rearrange the equation into the standard linear form: \[ \frac{dv}{dx} + v \tan x = \cos^2 x \] ### Step 5: Identify \( p(x) \) and \( q(x) \) Here, we identify: - \( p(x) = \tan x \) - \( q(x) = \cos^2 x \) ### Step 6: Find the integrating factor The integrating factor \( \mu(x) \) is given by: \[ \mu(x) = e^{\int p(x) \, dx} = e^{\int \tan x \, dx} = e^{-\ln \cos x} = \sec x \] ### Step 7: Multiply through by the integrating factor Multiply the entire differential equation by \( \sec x \): \[ \sec x \frac{dv}{dx} + v \sec x \tan x = \sec x \cos^2 x \] This simplifies to: \[ \sec x \frac{dv}{dx} + v \sec x \tan x = \sec x \cos^2 x \] ### Step 8: Solve the left-hand side The left-hand side can be expressed as the derivative of a product: \[ \frac{d}{dx}(v \sec x) = \sec x \cos^2 x \] ### Step 9: Integrate both sides Integrate both sides: \[ \int \frac{d}{dx}(v \sec x) \, dx = \int \sec x \cos^2 x \, dx \] This gives: \[ v \sec x = \int \sec x \cos^2 x \, dx + C \] ### Step 10: Solve the integral on the right-hand side To solve \( \int \sec x \cos^2 x \, dx \), we can use the identity \( \cos^2 x = 1 - \sin^2 x \): \[ \int \sec x \cos^2 x \, dx = \int \cos^2 x \, dx = \frac{1}{2}(x + \sin(2x)) + C \] ### Step 11: Substitute back for \( v \) Substituting back for \( v \): \[ \sec y \sec x = \frac{1}{2}(x + \sin(2x)) + C \] ### Step 12: Final solution Thus, the final solution for the differential equation is: \[ \sec y \sec x = \frac{1}{2}(x + \sin(2x)) + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |11 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Self Assessment Test |11 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |9 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos

Similar Questions

Explore conceptually related problems

tan y (dy) / (dx) + tan x = cos y * cos ^ (3) x

tan y (dy)/(dx) = sin x + cos x

tan y * (dy) / (dx) + tan x = cos y cos ^ (2) x

Solution of differential eqn (y) / (dx) = x sin y = sin y cos y is