Home
Class 12
MATHS
Solution of the differential equation co...

Solution of the differential equation `cos x dy= y (sin x-y) dx, 0 lt x lt (pi)/(2)` is

A

`sec x = (tan x +c)y`

B

`y sec x=tan x +c`

C

`y tan x=sec x +c`

D

`tan x=(sec x +c).y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( \cos x \, dy = y (\sin x - y) \, dx \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \cos x \, dy = y (\sin x - y) \, dx \] We can rearrange this to: \[ \frac{dy}{dx} = \frac{y (\sin x - y)}{\cos x} \] ### Step 2: Separate variables Now, we can separate the variables \( y \) and \( x \): \[ \frac{dy}{y (\sin x - y)} = \frac{dx}{\cos x} \] ### Step 3: Integrate both sides Next, we integrate both sides. The left side requires partial fraction decomposition: \[ \frac{1}{y (\sin x - y)} = \frac{A}{y} + \frac{B}{\sin x - y} \] Multiplying through by the denominator \( y (\sin x - y) \) gives: \[ 1 = A (\sin x - y) + B y \] Setting \( y = 0 \) gives \( A \sin x = 1 \) so \( A = \frac{1}{\sin x} \). Setting \( y = \sin x \) gives \( B \sin x = 1 \) so \( B = \frac{1}{\sin x} \). Thus: \[ \frac{1}{y (\sin x - y)} = \frac{1}{\sin x} \left( \frac{1}{y} + \frac{1}{\sin x - y} \right) \] Integrating both sides: \[ \int \left( \frac{1}{y} + \frac{1}{\sin x - y} \right) dy = \int \frac{dx}{\cos x} \] The left side integrates to: \[ \ln |y| - \ln |\sin x - y| = \ln \left| \frac{y}{\sin x - y} \right| \] The right side integrates to: \[ \ln |\sec x + \tan x| + C \] ### Step 4: Combine results Combining the results gives: \[ \ln \left| \frac{y}{\sin x - y} \right| = \ln |\sec x + \tan x| + C \] Exponentiating both sides: \[ \frac{y}{\sin x - y} = k (\sec x + \tan x) \] where \( k = e^C \). ### Step 5: Solve for \( y \) Now, we can solve for \( y \): \[ y = k (\sec x + \tan x)(\sin x - y) \] Rearranging gives: \[ y + k (\sec x + \tan x) y = k (\sec x + \tan x) \sin x \] Factoring out \( y \): \[ y(1 + k (\sec x + \tan x)) = k (\sec x + \tan x) \sin x \] Thus: \[ y = \frac{k (\sec x + \tan x) \sin x}{1 + k (\sec x + \tan x)} \] ### Final Solution The solution to the differential equation is: \[ y = \frac{k (\sec x + \tan x) \sin x}{1 + k (\sec x + \tan x)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |11 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos

Similar Questions

Explore conceptually related problems

The solution of differential equation cos x dy = y (sin x - y ) dx, 0 lt x lt pi //2 is

Solution of the differential equation cos x cos y dy -sin x sin y dx=0 is

Solution of the differential equation cos^(2)(x-y)(dy)/(dx)=1

Solution of the differential equation sin x. cos y dy + cos x. sin y dx = 0 is

Solution of the differential equation y dx+(x-y^(2))dy=0 is

Let y = y (x) be the solution of the differential equation cos x (dy)/(dx) + 2y sin x = sin 2x , x in (0, pi/2) . If y(pi//3) = 0, " then " y(pi//4) is equal to :