Home
Class 12
MATHS
log(e) (n+1) - log(e) (n-1) = 2 [(1)/(n)...

`log_(e) (n+1) - log_(e) (n-1) = 2 [(1)/(n) + (1)/(3) . (1)/(n^(3)) + (1)/(5). (1)/(n^(5)) + ...]`

Text Solution

Verified by Experts

The correct Answer is:
T
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS )|28 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

Prove that log_(e)((n^(2))/(n^(2)-1))=(1)/(n^(2))+(1)/(2n^(4))+(1)/(3n^(6))+

(1)/(log_(2) e) + (1)/(log_(2)e^(2)) + (1)/(log_(2) e^(4)) + .... =

(1) / (log_ (3) e) + (1) / (log_ (3) e ^ (2)) + (1) / (log_ (3) e ^ (4)) + ... =

if log_(e)(x-1) + log_(e)(x) + log_(e)(x+1)=0 , then

Solve : log_e (x-a) + log_e x =1 (a>0)

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

The sum of the series: (1)/(log_(2)4)+(1)/(log_(4)4)+(1)/(log_(8)4)+...+(1)/(log_(2n)4) is (n(n+1))/(2) (b) (n(n+1)(2n+1))/(12) (c) (n(n+1))/(4) (d) none of these

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

sum_(n=1)^(n)(1)/(log_(2)(a))