Home
Class 12
MATHS
If alpha, beta are the roots of the equa...

If `alpha, beta` are the roots of the equation `ax^(2) + bx + c =0`, prove that
`log_(e) (ax^(2) + bx + c) = log_(e) a + 2 log_(e)x-(1)/(x) (alpha + beta) - (1)/(2x^(2)) (alpha^(2) + beta^(2)) - (1)/(3x^(3)) (alpha^(3) + beta^(3))-...`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the given equation \[ \log_e (ax^2 + bx + c) = \log_e a + 2 \log_e x - \frac{1}{x} (\alpha + \beta) - \frac{1}{2x^2} (\alpha^2 + \beta^2) - \frac{1}{3x^3} (\alpha^3 + \beta^3) - \ldots \] where \(\alpha\) and \(\beta\) are the roots of the quadratic equation \(ax^2 + bx + c = 0\), we can follow these steps: ### Step 1: Rewrite the quadratic equation The quadratic equation can be expressed in terms of its roots: \[ ax^2 + bx + c = a(x - \alpha)(x - \beta) \] This is because the roots of the equation are \(\alpha\) and \(\beta\). ### Step 2: Apply the logarithmic property Using the property of logarithms, we can write: \[ \log_e (ax^2 + bx + c) = \log_e [a(x - \alpha)(x - \beta)] = \log_e a + \log_e (x - \alpha) + \log_e (x - \beta) \] ### Step 3: Factor out \(x\) from the logarithmic terms We can factor \(x\) out of the logarithmic terms: \[ \log_e (x - \alpha) = \log_e x + \log_e \left(1 - \frac{\alpha}{x}\right) \] \[ \log_e (x - \beta) = \log_e x + \log_e \left(1 - \frac{\beta}{x}\right) \] Thus, we have: \[ \log_e (ax^2 + bx + c) = \log_e a + 2 \log_e x + \log_e \left(1 - \frac{\alpha}{x}\right) + \log_e \left(1 - \frac{\beta}{x}\right) \] ### Step 4: Expand the logarithmic terms Using the Taylor series expansion for \(\log_e(1 - u)\) around \(u = 0\): \[ \log_e(1 - u) = -u - \frac{u^2}{2} - \frac{u^3}{3} - \ldots \] we can substitute \(u = \frac{\alpha}{x}\) and \(u = \frac{\beta}{x}\): \[ \log_e \left(1 - \frac{\alpha}{x}\right) = -\frac{\alpha}{x} - \frac{\alpha^2}{2x^2} - \frac{\alpha^3}{3x^3} - \ldots \] \[ \log_e \left(1 - \frac{\beta}{x}\right) = -\frac{\beta}{x} - \frac{\beta^2}{2x^2} - \frac{\beta^3}{3x^3} - \ldots \] ### Step 5: Combine the expansions Combining these expansions gives: \[ \log_e (ax^2 + bx + c) = \log_e a + 2 \log_e x - \left(\frac{\alpha + \beta}{x} + \frac{\alpha^2 + \beta^2}{2x^2} + \frac{\alpha^3 + \beta^3}{3x^3} + \ldots \right) \] ### Step 6: Identify the final expression Thus, we have: \[ \log_e (ax^2 + bx + c) = \log_e a + 2 \log_e x - \frac{1}{x} (\alpha + \beta) - \frac{1}{2x^2} (\alpha^2 + \beta^2) - \frac{1}{3x^3} (\alpha^3 + \beta^3) - \ldots \] This completes the proof.
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS )|28 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation ax^(2)+bx+c=0, then the value of alpha^(3)+beta^(3)

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then log(a-bx+cx^(2)) is equal to

If alpha and beta are the roots of the equation ax^(2)+bx+c=0" then "int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=

If alpha& beta are the roots of the equation ax^(2)+bx+c=0, then (1+alpha+alpha^(2))(1+beta+beta^(2))=

If alpha. beta are roots of the equation ax^(2)+bx+c=0 and alpha-beta=alpha*beta then

If alpha,beta are the roots of the equation ax^(2)+bx+c=0, then prove that (alpha)/(beta)+(beta)/(alpha)=(b^(2)-2ac)/(ac)

If alpha,beta are roots of the equation ax^(2)-bx-c=0, then alpha^(2)-alpha beta+beta^(2) is equal to-

If alpha,beta are the roots of the equation x^(2)-px+q=0 ,prove that log_(e)(1+px+qx^(2))=(alpha+beta)x-(alpha^(2)+beta^(2))/(2)x^(2)+(alpha^(3)+beta^(3))/(3)x^(3)+

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=