Home
Class 12
MATHS
If f = (x)/(1+x^(2)) + (1)/(3) ((x)/(1+x...

If `f = (x)/(1+x^(2)) + (1)/(3) ((x)/(1+x^(2)))^(3) + (1)/(5) ((x)/(1+x^(2)))^(5) + ...`
and `g = x- (2)/(3)x^(3) + (1)/(5)x^(5) + (1)/(7) x^(7) - (2)/(9)x^(9) +...` then `f -=g`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f \) and \( g \) given in the question and then find \( f - g \). ### Step 1: Express \( f \) in terms of a known series The function \( f \) is given as: \[ f = \frac{x}{1+x^2} + \frac{1}{3} \left( \frac{x}{1+x^2} \right)^3 + \frac{1}{5} \left( \frac{x}{1+x^2} \right)^5 + \ldots \] This series can be recognized as a Taylor series expansion. We can relate it to the series for \( \log \) functions. The series for \( \log(1+x) \) can be expressed as: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] ### Step 2: Identify the series form Notice that the series for \( f \) can be rewritten using the substitution \( u = \frac{x}{1+x^2} \): \[ f = \sum_{n=0}^{\infty} \frac{1}{2n+1} u^{2n+1} = \frac{1}{2} \log \left( \frac{1+u}{1-u} \right) \] ### Step 3: Simplify \( f \) Substituting \( u \): \[ f = \frac{1}{2} \log \left( \frac{1 + \frac{x}{1+x^2}}{1 - \frac{x}{1+x^2}} \right) \] This simplifies to: \[ f = \frac{1}{2} \log \left( \frac{(1+x^2+x)}{(1+x^2-x)} \right) \] ### Step 4: Express \( g \) The function \( g \) is given as: \[ g = x - \frac{2}{3} x^3 + \frac{1}{5} x^5 + \frac{1}{7} x^7 - \frac{2}{9} x^9 + \ldots \] This series can also be related to the logarithmic series. We can rewrite \( g \) as: \[ g = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} - \frac{2}{3} x^3 - \frac{2}{9} x^9 \] ### Step 5: Combine \( f \) and \( g \) Now we need to find \( f - g \): \[ f - g = \left( \frac{1}{2} \log \left( \frac{(1+x^2+x)}{(1+x^2-x)} \right) \right) - \left( x - \frac{2}{3} x^3 + \frac{1}{5} x^5 + \ldots \right) \] ### Step 6: Analyze the result To analyze the result, we can evaluate \( f \) and \( g \) at specific points, such as \( x = 0 \) and \( x = 1 \). 1. At \( x = 0 \): \[ f(0) = 0, \quad g(0) = 0 \quad \Rightarrow \quad f(0) - g(0) = 0 \] 2. At \( x = 1 \): \[ f(1) = \frac{1}{2} \log(3), \quad g(1) \text{ is undefined.} \] ### Conclusion Thus, we find that \( f \) and \( g \) are not equal for all \( x \), specifically at \( x = 1 \). Therefore, the statement \( f - g = 0 \) is false.
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS )|28 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

If quad f=(x)/(1+x^(2))+(1)/(3)((x)/(1+x^(2)))^(3)+(1)/(5)((x)/(1+x^(2)))^(5)+ and g=x-(2)/(3)x^(3)+(1)/(5)x^(5)+(1)/(7)x^(7)-.... then

(1) / (2x-3) + (1) / (x-5) = 1 (1) / (9)

(5x)/(3)-(x-2)/(3)=(9)/(4)-(1)/(2)(x-(2x-1)/(3))

Add: (3x^(2) - (1)/(5)x + (7)/(3)) + ((-1)/(4)x^(2) + (1)/(3)x - (1)/(6)) + (-2x^(2) - (1)/(2)x + 5)

Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5) and let g (x) = f ^(-1) (x). Find g'''(o).

Simplify: ((13)/(9)x(-15)/(2))+((7)/(3)x(8)/(5))+((3)/(5)x(1)/(2))

Simplify: ((1)/(4)x(2)/(7))-((5)/(14)x(-2)/(3))+((3)/(7)x(9)/(2))