Home
Class 11
MATHS
underset( n rarr infty)lim(1^(2)+2^(2)+...

`underset( n rarr infty)lim(1^(2)+2^(2)+…+n^(2))/(n^(3))`

A

`2/3`

B

`1/6`

C

`1/2`

D

`1/3`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    OMEGA PUBLICATION|Exercise IMPORTANT QUESTIONS FROM MISCELLANEOUS EXERCISE|9 Videos
  • CONIC SECTIONS

    OMEGA PUBLICATION|Exercise Multiple Choice Questions (MCQs)|26 Videos
  • LINEAR INEQUALITIES

    OMEGA PUBLICATION|Exercise Multiple Choice Questions |15 Videos

Similar Questions

Explore conceptually related problems

underset(nrarrinfty)lim (1^2+2^2+3^2+………+n^2)/n^3 is equal to:

Evaluate underset(ntooo)limn^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))...(n+2^(-n+1))]^(n) .

The value of lim_(n rarr infty )n{(1)/(3n^(2)+8n+4)+(1)/(3n^(2) +16n+16)+...+n "terms"} is equal to

lim_(n rarr infty) sum_(k=1)^(n) (k)/(n^(2)+k^(2)),x gt 0 is equal to

Show that lim_(nrarr infty) sum_(k=0)^(n)(""^(n)Ck)/(n^k(k+3))=e-2

If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3 , then the range of x is (where n in N )

Let L= lim_(nrarr infty) int_(a)^(infty)(n dx)/(1+n^(2)x^(2)) , where a in R, then L can be