Home
Class 11
MATHS
For an positive integer n, prove that : ...

For an positive integer n, prove that : `i^(n) + i^(n+1) + i^(n+2) + i^(n+3) + i^(n+4) + i^(n + 5) + i^(n+6) + i^(n+7) = 0`.

Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTIONS PAPER-4 (PUNJAB)

    OMEGA PUBLICATION|Exercise Section -C|15 Videos
  • SAMPLE QUESTIONS PAPER-4 (PUNJAB)

    OMEGA PUBLICATION|Exercise Section- D|7 Videos
  • SAMPLE QUESTIONS PAPER-4 (PUNJAB)

    OMEGA PUBLICATION|Exercise Section- D|7 Videos
  • SAMPLE QUESTIONS PAPER - 5 (PUNJAB)

    OMEGA PUBLICATION|Exercise Section C|19 Videos
  • SEQUENCE AND SERIES

    OMEGA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS MCQs|16 Videos

Similar Questions

Explore conceptually related problems

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 , for all n in N .

Prove that: adj.I_n^-1=I_n

Find the least positive integer n for which ((1+i)/(1-i))^n = 1

For positive integers n_1,n_2 , the value of the expression : (1+i)^(n_1)+(1+i^3)^(n_1) +(1+i^5)^(n_2)+ (1+i^7)^(n_2) , where i= sqrt(-1) is a real number if and only if :

Prove that: adj.I_n=I_n

For all n in N, prove that : n^2/7+n^5/5+2/3 n^2-n/105 is an integer.

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(r=4)^(100)i^(r!)+prod_(r=1)^(101)i^(r)=a+ib, " where " i=sqrt(-1) , then a+75b, is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(r=-2)^(95)i^(r)+sum_(r=0)^(50)i^(r!)=a+ib, " where " i=sqrt(-1) , the unit digit of a^(2011)+b^(2012) , is