Home
Class 12
MATHS
By using properties of determinants, sh...

By using properties of determinants, show that : `|[1,1,1],[a,b,c],[a^3,b^3,c^3]| = (a-b)(b-c)(c-a)(a+b+c)`

Text Solution

Verified by Experts

The correct Answer is:
R.H.S.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OMEGA PUBLICATION|Exercise Important Questions from Miscellaneous Exercise|14 Videos
  • DETERMINANTS

    OMEGA PUBLICATION|Exercise Multiple Choice Questions (MCQs)|20 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OMEGA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS |11 Videos
  • DIFFERENTIAL EQUATIONS

    OMEGA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (MCQs) |44 Videos

Similar Questions

Explore conceptually related problems

Using the properties of determinants show that : |[[1,1,1],[a^2,b^2,c^2],[a^3,b^3,c^3]]|=(a-b)(b-c)(c-a)(ab+bc+ca) .

By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2],[1,c,c^2]| = (a-b)(b-c)(c-a)

Using the properties of determinants show that : |[[a^2, b^2, c^2],[bc,ca,ab],[a,b,c]]|=(a-b)(b-c)(c-a)(ab+bc+ca)

By using properties of determinants, Show that : {:|(0,a,-b),(-a,0,-c),(b,c,0)|=0

Prove that |[[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]]|= abc (a-b)(b-c)(c-a)

Using the properties of determinant, show that : |[1,a+b,a^2+b^2],[1,b+c,b^2+c^2],[1,c+a,c^2+a^2]| = (a-b)(b-c)(c-a)

Using the properties of determinants show that : |[[1, a^2+bc, a^3],[1,b^2+ac,b^3],[1,c^2+ab,c^3]]|=(a-b)(b-c)(c-a)(a^2+b^2+c^2)

Using the properties of determinants, prove that : |[[x+a,b,c],[a,x+b,c],[a,b,x+c]]| = x^2(x+a+b+c)

Using properties of determinants, prove that: |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]| = 3(a+b+c)(ab+bc+ca)

OMEGA PUBLICATION-DETERMINANTS-Multiple Choice Questions (MCQs)
  1. By using properties of determinants, show that : |[1,1,1],[a,b,c],[a^...

    Text Solution

    |

  2. If |[x,2],[18,x]| = |[6,2],[18,6]|, then x is equal to:

    Text Solution

    |

  3. Let A be a square matrix of order 3 xx 3. Then I kA I is equal to :

    Text Solution

    |

  4. If A is an invertible matrix of order n, then |adj A|=

    Text Solution

    |

  5. If area of triangle is 35 sq. units with vertices (2, - 6), (5, 4) and...

    Text Solution

    |

  6. Delta=|(a(11),a(12),a(13)),(a(21),a(22),a(23)),(a(31),a(32),a(33))| an...

    Text Solution

    |

  7. Let A be a non-singular matrix of order 3 xx 3. Then I adj. A I is equ...

    Text Solution

    |

  8. Select the Correct Option If A is an invertible matrix of order 2, the...

    Text Solution

    |

  9. If a, b, c are in A.P., then the determinant abs{:(x+2, x+3, x+2a),(x+...

    Text Solution

    |

  10. If x, y, z are non-zero real numbers, then the inverse of matrix A = [...

    Text Solution

    |

  11. Let A = [{:(1, sin theta , 1),(-sin theta, 1 , sin theta),(-1 , - sin ...

    Text Solution

    |

  12. If |[x,2],[18,x]| = |[6,2],[18,6]|, then x is equal to:

    Text Solution

    |

  13. Let A be a square matrix of order 3 xx 3. Then I kA I is equal to :

    Text Solution

    |

  14. If A is an invertible matrix of order n, then |adj A|=

    Text Solution

    |

  15. If area of triangle is 35 sq. units with vertices (2, - 6), (5, 4) and...

    Text Solution

    |

  16. Delta=|(a(11),a(12),a(13)),(a(21),a(22),a(23)),(a(31),a(32),a(33))| an...

    Text Solution

    |

  17. Let A be a non-singular square matrix of order 3×3. Then abs(adjA) is

    Text Solution

    |

  18. lf A is an invertible matrix of order 2, then |A^(-1) | is equal to

    Text Solution

    |

  19. If a, b, c, are in A.P, then the determinant |[x+2,x+3,x+2a],[x+3,x+4,...

    Text Solution

    |

  20. If x. y, z are non- real number", then the inverse of matrix A = [[x,0...

    Text Solution

    |

  21. Let A = [{:(1, sin theta , 1),(-sin theta, 1 , sin theta),(-1 , - sin ...

    Text Solution

    |