Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove that: `|[sinalpha,cosalpha,cos(alpha+delta)],[sinbeta,cosbeta,cos(beta+delta)],[singamma,cosgamma,cos(gamma+delta)]| = 0`

Text Solution

Verified by Experts

The correct Answer is:
R.H.S.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OMEGA PUBLICATION|Exercise Multiple Choice Questions (MCQs)|20 Videos
  • DETERMINANTS

    OMEGA PUBLICATION|Exercise Multiple Choice Questions (MCQs)|20 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OMEGA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS |11 Videos
  • DIFFERENTIAL EQUATIONS

    OMEGA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (MCQs) |44 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove that: |[alpha,alpha^2,beta+gamma],[beta,beta^2,gamma+alpha],[gamma,gamma^2,alpha+beta]| = (beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

Using vectors, prove that cos(alpha-beta)=cosalpha cosbeta+sinalphasinbeta

Evaluate triangle = |[0,sinalpha,-cosalpha],[-sinalpha,0,sinbeta],[cosalpha,-sinbeta,0]|

Using vectors, prove that sin (alpha+beta)=sin alpha cos beta+ cos alpha sin beta .

Show that the determinant Delta(x) given by Delta(x) = |{:(sin(x+alpha),cos(x+alpha),a+xsinalpha),(sin(x+beta),cos(x+beta),b+xsinbeta),(sin(x+gamma),cos(x+gamma),c+xsingamma):}| is independent of x .

Using vectors prove that sin(alpha - beta) = sin alpha cos beta- cos alpha sin beta .

Prove that: (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos(alpha+beta)/(2)cos(beta+gamma)/2cos(gamma+alpha)/2

Without expanding, show that the following determinants vanish: {:|(1,cos(beta-alpha),cos(gamma-alpha)),(cos(alpha-beta),1,cos(gamma-beta)),(cos(alpha-gamma)),cos(beta-gamma),1|