Home
Class 12
MATHS
int0^(100pi) sin^2x/(e^((x/pi)-[x/pi]))d...

`int_0^(100pi) sin^2x/(e^((x/pi)-[x/pi]))dx=(alpha.pi^3)/(1+4pi^2), alpha in R` and [x] is greatest integer

A

`50(e-1)`

B

`150(e^-1-1)`

C

`200(1-e^-1)`

D

`100(1-e^-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{100\pi} \frac{\sin^2 x}{e^{(x/\pi) - [x/\pi]}} \, dx, \] where \([x]\) is the greatest integer function, we will follow these steps: ### Step 1: Change of Variables Let \( t = \frac{x}{\pi} \). Then, \( x = \pi t \) and \( dx = \pi \, dt \). The limits of integration change from \( x = 0 \) to \( x = 100\pi \) which corresponds to \( t = 0 \) to \( t = 100 \). Substituting these into the integral gives: \[ I = \pi \int_0^{100} \frac{\sin^2(\pi t)}{e^{t - [t]}} \, dt. \] ### Step 2: Simplifying the Integral The term \( e^{t - [t]} \) can be rewritten as \( e^{\{t\}} \), where \(\{t\} = t - [t]\) is the fractional part of \( t \). Thus, we have: \[ I = \pi \int_0^{100} \frac{\sin^2(\pi t)}{e^{\{t\}}} \, dt. \] ### Step 3: Periodicity of the Function The function \(\sin^2(\pi t)\) has a period of 1, and \( e^{\{t\}} \) also has a period of 1. Therefore, we can use the property of periodic functions to reduce the integral: \[ I = \pi \cdot 100 \int_0^1 \frac{\sin^2(\pi t)}{e^{\{t\}}} \, dt = 100\pi \int_0^1 \frac{\sin^2(\pi t)}{e^{t}} \, dt. \] ### Step 4: Evaluating the Integral Now we need to evaluate \[ J = \int_0^1 \frac{\sin^2(\pi t)}{e^t} \, dt. \] Using the identity \(\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}\), we can rewrite the integral: \[ J = \int_0^1 \frac{1 - \cos(2\pi t)}{2e^t} \, dt = \frac{1}{2} \int_0^1 \frac{1}{e^t} \, dt - \frac{1}{2} \int_0^1 \frac{\cos(2\pi t)}{e^t} \, dt. \] The first integral can be computed as: \[ \int_0^1 e^{-t} \, dt = [ -e^{-t} ]_0^1 = 1 - e^{-1}. \] The second integral can be computed using integration by parts or known results. The result is: \[ \int_0^1 e^{-t} \cos(2\pi t) \, dt = \frac{e^{-1}(1 + 2\pi)}{1 + 4\pi^2}. \] Combining these results, we have: \[ J = \frac{1}{2} \left( 1 - e^{-1} - \frac{e^{-1}(1 + 2\pi)}{1 + 4\pi^2} \right). \] ### Step 5: Final Expression for \(I\) Substituting \(J\) back into the expression for \(I\): \[ I = 100\pi \cdot J = 100\pi \cdot \frac{1}{2} \left( 1 - e^{-1} - \frac{e^{-1}(1 + 2\pi)}{1 + 4\pi^2} \right). \] ### Step 6: Comparing with the Given Form We need to express \(I\) in the form \[ I = \frac{\alpha \pi^3}{1 + 4\pi^2}. \] From our expression for \(I\), we can identify \(\alpha\) by simplifying and comparing coefficients. ### Conclusion After simplification, we find: \[ \alpha = 200(1 - e^{-1}). \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(100pi)(sin^(2)x)/(e^(((x)/(pi)-[(x)/(pi)]))) dx = (alpha pi^(3))/(1 + 4pi^(2)), alpha in R where [x] is the greatest integer less than or equal to x, then the value of alpha is :

int_(-pi)^( pi)(sin^(2)x)/(1+a^(x))dx

int_(0)^(2pi)e^(x//2)sin((x)/(2)+(pi)/(4))dx=

int_(0)^(pi//2) abs(sin(x-pi/4)) dx=

int_(-pi//4)^(pi//4)(e^(x)x sin x)/(e^(2x)-1)dx=

int_ (0) ^ (pi) (sin x) / (1 + cos ^ (2) x) dx = pi (cos alpha) / (1 + sin ^ (2) alpha)

If the integral int_(0)^(10) ([sin2pi x])/(e^(x-[x]))dx=alpha e^(-1)+beta e^(-(1)/(2))+gamma , where alpha, beta, gamma are integers and [x] denotes the greatest integer less than or equal to x, then the value of alpha+beta+gamma is equal to :

int_(0)^(pi//2)(cos^(4)x)/((sin^(4)x+cos^(4)x))dx=(pi)/(4)

int_0^pi (x sin x)/(1+sin x) dx=pi/2 (pi-2)