Home
Class 12
MATHS
Find the value of lamda and mu for which...

Find the value of `lamda and mu` for which the system of equations
`x+y+z=6`
`3x+5y+5z=26`
`x+2y+lamdaz=mu`
has no solution

A

`lamda=2 , mu ne 10`

B

`lamda ne 2 , mu = 10`

C

`lamda ne 3 , mu = 10`

D

`lamda ne 2 , mu ne 10`

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( \lambda \) and \( \mu \) for which the given system of equations has no solution, we will analyze the system using determinants. The system of equations is: 1. \( x + y + z = 6 \) (Equation 1) 2. \( 3x + 5y + 5z = 26 \) (Equation 2) 3. \( x + 2y + \lambda z = \mu \) (Equation 3) ### Step 1: Form the coefficient matrix and find the determinant The coefficient matrix \( A \) of the system is: \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 5 \\ 1 & 2 & \lambda \end{bmatrix} \] We need to find the determinant \( D \) of this matrix: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 3 & 5 & 5 \\ 1 & 2 & \lambda \end{vmatrix} \] ### Step 2: Calculate the determinant Using the determinant formula for a 3x3 matrix: \[ D = 1 \cdot \begin{vmatrix} 5 & 5 \\ 2 & \lambda \end{vmatrix} - 1 \cdot \begin{vmatrix} 3 & 5 \\ 1 & \lambda \end{vmatrix} + 1 \cdot \begin{vmatrix} 3 & 5 \\ 1 & 2 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 5 & 5 \\ 2 & \lambda \end{vmatrix} = 5\lambda - 10 \) 2. \( \begin{vmatrix} 3 & 5 \\ 1 & \lambda \end{vmatrix} = 3\lambda - 5 \) 3. \( \begin{vmatrix} 3 & 5 \\ 1 & 2 \end{vmatrix} = 6 - 5 = 1 \) Substituting these back into the determinant: \[ D = 1(5\lambda - 10) - 1(3\lambda - 5) + 1(1) \] \[ D = 5\lambda - 10 - 3\lambda + 5 + 1 \] \[ D = 2\lambda - 4 \] ### Step 3: Set the determinant to zero For the system to have no solution, the determinant must be zero: \[ 2\lambda - 4 = 0 \] \[ 2\lambda = 4 \] \[ \lambda = 2 \] ### Step 4: Find \( \mu \) such that the system has no solution Now we need to find \( \mu \) such that the system has no solution. We will calculate the determinants \( D_1 \) and \( D_2 \) and check their conditions. #### Calculate \( D_1 \) Replacing the first column of the coefficient matrix with the constants from the right-hand side: \[ D_1 = \begin{vmatrix} 6 & 1 & 1 \\ 26 & 5 & 5 \\ \mu & 2 & 2 \end{vmatrix} \] Calculating \( D_1 \): \[ D_1 = 6 \cdot \begin{vmatrix} 5 & 5 \\ 2 & 2 \end{vmatrix} - 1 \cdot \begin{vmatrix} 26 & 5 \\ \mu & 2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 26 & 5 \\ \mu & 2 \end{vmatrix} \] Since the second and third minors are the same, we can simplify: \[ D_1 = 6(0) - 0 + 0 = 0 \] #### Calculate \( D_2 \) Now we calculate \( D_2 \): \[ D_2 = \begin{vmatrix} 1 & 1 & 1 \\ 3 & 5 & 5 \\ 1 & 2 & \mu \end{vmatrix} \] Calculating \( D_2 \): \[ D_2 = 1 \cdot \begin{vmatrix} 5 & 5 \\ 2 & \mu \end{vmatrix} - 1 \cdot \begin{vmatrix} 3 & 5 \\ 1 & \mu \end{vmatrix} + 1 \cdot \begin{vmatrix} 3 & 5 \\ 1 & 2 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 5 & 5 \\ 2 & \mu \end{vmatrix} = 5\mu - 10 \) 2. \( \begin{vmatrix} 3 & 5 \\ 1 & \mu \end{vmatrix} = 3\mu - 5 \) 3. \( \begin{vmatrix} 3 & 5 \\ 1 & 2 \end{vmatrix} = 1 \) Putting it all together: \[ D_2 = 1(5\mu - 10) - 1(3\mu - 5) + 1(1) \] \[ D_2 = 5\mu - 10 - 3\mu + 5 + 1 \] \[ D_2 = 2\mu - 4 \] ### Step 5: Set conditions for no solution For the system to have no solution, we need \( D_2 \neq 0 \): \[ 2\mu - 4 \neq 0 \] \[ \mu \neq 2 \] ### Conclusion Thus, the values of \( \lambda \) and \( \mu \) for which the system of equations has no solution are: \[ \lambda = 2 \quad \text{and} \quad \mu \neq 2 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

The values of lambda and mu such that the system of equations x + y + z = 6, 3x + 5y + 5z = 26, x + 2y + lambda z = mu has no solution, are :

The value of lambda and mu for which the system of linear equation x+y+z=2 x+2y+3z=5 x+3y+lambda z= mu has infinitely many solutions are , respectively :

Consider the system of equations x+y+z=6 x+2y+3z=10 x+2y+lambdaz =mu The system has no solution if

Consider the system of equations x+y+z=5 x+2y+lamda^2z=9 x+3y+lamdaz=mu

Find the values of lambda and mu so that the system of equations (i) 2x-3y+5z =12 (ii) 3x+ y+lambda z=mu (iii) x-7y+8z =17 has