Home
Class 12
MATHS
If A = [[1,1,1],[1,1,1],[1,1,1]], prove ...

If `A = [[1,1,1],[1,1,1],[1,1,1]]`, prove that `A^n = [[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)]], n in N`

Text Solution

Verified by Experts

The correct Answer is:
P.M.I., it is true for even` n in N`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    BETTER CHOICE PUBLICATION|Exercise Assignment (Section I) M.C.Q|10 Videos
  • MATRICES

    BETTER CHOICE PUBLICATION|Exercise Assignment (Section II) Short answer type questions |14 Videos
  • MATRICES

    BETTER CHOICE PUBLICATION|Exercise Solve Examples (Section IV) Short answer type questions |13 Videos
  • LINEAR PROGRAMMING

    BETTER CHOICE PUBLICATION|Exercise Previous Years Board.s Questions For Practice|10 Videos
  • PROBABILITY

    BETTER CHOICE PUBLICATION|Exercise Previous year Board.s questions for practice|43 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,1,1),(1,1,1),(1,1,1)] , prove that A^(n)=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))],n inN

Prove that "^(n-1)C_3+ ^(n-1)C_4 > ^nC_3 if n >7.

prove: (2^n+2^(n-1))/(2^(n+1)-2^n)=3/2

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

Let A=[(1,1,1),(0,1,1),(0,0,1)] prove that by induction that A^n=[(1,n,n(n+1)/2),(0,1,n),(0,0,1)] for all n in N .

Find the value of (3^n × 3^(2n + 1))/(3^(2n) × 3^(n - 1))

If A = [[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)],[l_(3),m_(3),n_(3)]] then Find A+I

Prove that : ^(2n)C_n = (2^n [1.3.5. ..........(2n-1)])/(n!) .

Prove that 1+1* ""^(1)P_(1)+2* ""^(2)P_(2)+3* ""^(3)P_(3) + … +n* ""^(n)P_(n)=""^(n+1)P_(n+1).

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .