Home
Class 12
MATHS
IfI1=int0^(pi/2)f(sinx)sinxdx and I2=int...

If`I_1=int_0^(pi/2)f(sinx)sinxdx` and `I_2=int_0^(pi/2)f(cosx)cosxdx`then`I_1/I_2`

Text Solution

AI Generated Solution

To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and find the ratio \( \frac{I_1}{I_2} \). ### Step-by-step Solution: 1. **Define the Integrals**: \[ I_1 = \int_0^{\frac{\pi}{2}} f(\sin x) \sin x \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1)=int_(0)^(pi//2)f(sin2x)sin x dx and I_(2)=int_(0)^(pi//4)f(cos2x)cosx dx , then I_(1)//I_(2) is equal to

int_0^(pi/2) sqrt(cosx)sinxdx

int_0^(pi/2) (1+sinx)^3cosxdx

If I_(1)=int_((Q)/(2))^((pi)/(2))f(sin x)sin xdx and I_(2)=int_(0)^((pi)/(2))f(cos x)cos xdx th len(I_(1))/(I_(2))

int_0^(pi/2) x^2sinxdx

If I_(1)=int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx , then

If I_(1)=int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx , then

int_0^(pi/2) cosx/(1+sinx)dx

int_0^(pi/2) (Cosx - Sinx)dx

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then