Home
Class 11
MATHS
In any triangle A B C ,\ sin A-cos B=cos...

In any triangle `A B C ,\ sin A-cos B=cos C ,\ ` the angle`\ B` is a.`pi/2` b. `pi/3` c.`pi/4` d. `pi/6`

A

`pi/2`

B

`pi/3`

C

`pi/4`

D

`pi/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given in the triangle \( ABC \): \[ \sin A - \cos B = \cos C \] ### Step 1: Rearranging the equation We can rearrange the equation to isolate \( \sin A \): \[ \sin A = \cos B + \cos C \] ### Step 2: Using the triangle angle sum property In any triangle, the sum of angles is \( \pi \): \[ A + B + C = \pi \] From this, we can express \( C \) in terms of \( A \) and \( B \): \[ C = \pi - A - B \] ### Step 3: Substitute \( C \) into the equation Now, we substitute \( C \) into the equation \( \sin A = \cos B + \cos C \): \[ \sin A = \cos B + \cos(\pi - A - B) \] Using the property of cosine, \( \cos(\pi - x) = -\cos x \): \[ \sin A = \cos B - \cos(A + B) \] ### Step 4: Using the cosine addition formula We can use the cosine addition formula: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Substituting this into our equation gives: \[ \sin A = \cos B - (\cos A \cos B - \sin A \sin B) \] ### Step 5: Rearranging the equation Rearranging gives us: \[ \sin A + \cos A \cos B - \sin A \sin B = \cos B \] ### Step 6: Factor out \( \sin A \) Now, we can factor out \( \sin A \): \[ \sin A (1 + \sin B) = \cos B (1 - \cos A) \] ### Step 7: Analyzing the angles Since \( A + B + C = \pi \), we can analyze the values of \( B \). We need to check the options given: 1. **Option a: \( \frac{\pi}{2} \)** 2. **Option b: \( \frac{\pi}{3} \)** 3. **Option c: \( \frac{\pi}{4} \)** 4. **Option d: \( \frac{\pi}{6} \)** ### Step 8: Testing \( B = \frac{\pi}{2} \) If we set \( B = \frac{\pi}{2} \): - Then \( C = \pi - A - \frac{\pi}{2} = \frac{\pi}{2} - A \). - Thus, \( \cos B = 0 \) and \( \cos C = \sin A \). Substituting back into the original equation: \[ \sin A - 0 = \sin A \] This holds true. Therefore, \( B = \frac{\pi}{2} \) is a valid solution. ### Conclusion Thus, the angle \( B \) is: \[ \boxed{\frac{\pi}{2}} \]

To solve the problem, we start with the equation given in the triangle \( ABC \): \[ \sin A - \cos B = \cos C \] ### Step 1: Rearranging the equation We can rearrange the equation to isolate \( \sin A \): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATION

    ALLEN|Exercise All Questions|114 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC angle A = (pi)/(6) & b:c= 2: sqrt(3) "then " angle B is

In a triangleA B C ,/_B=90^0 and b+a=4. The area of the triangle is maximum when /_C is (a) pi/4 (b) pi/6 (c) pi/3 (d) none of these

IF the lengths of the side of triangle are 3,5 and 7, then the largest angle of the triangle is pi/2 (b) (5pi)/6 (c) (2pi)/3 (d) (3pi)/4

In a triangle A B C ,a : b : c=4:5: 6. Then 3A+B equals to: 4C b. 2pi c. pi-C d. pi

In a A B C , if (c+a+b)(a+b-c)=a b , then the measure of angel C is pi/3 (b) pi/6 (c) (2pi)/3 (d) pi/2

if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

In the sides of a triangle are in the ratio 1:sqrt(3):2, then the measure of its greatest angle is (a) pi/6 (b) pi/3 (c) pi/2 (d) (2pi)/3

In a triangle A B C , , if C is a right angle, then tan^(-1)(a/(b+c))+tan^(-1)(b/(c+a))= (a) pi/3 (b) pi/4 (c) (5pi)/2 (d) pi/6

The angle of intersection of the curves y=2\ sin^2x and y=cos2\ x at x=pi/6 is (a) pi//4 (b) pi//2 (c) pi//3 (d) pi//6

A and B are positive acute angles satisfying the equations 3cos^(2)A+2cos^(2)B=4 and (3sinA)/(sinB)=(2cosB)/(cosA) , then A+2B is equal to (a) pi/4 (b) pi/3 (c) pi/6 (d) pi/2

ALLEN-TRIGONOMETRIC RATIOS AND IDENTITIES-All Questions
  1. sin (67(1)/2)^(@)+cos(67(1)/2)^(@) is equal to

    Text Solution

    |

  2. The value of sin 78^0-sin 66^0-sin 42^0+sin6^0 is a. -1 b. 1//2 c. -1/...

    Text Solution

    |

  3. In any triangle A B C ,\ sin A-cos B=cos C ,\ the angle\ B is a.pi...

    Text Solution

    |

  4. If A+B+C=(3pi)/2, t h e ncos2A+cos2B+cos2C is equal to 1-4cos Acos Bc...

    Text Solution

    |

  5. Prove that 5 cos theta+3cos(theta+(pi)/(3))+3 lies between -4 and 10.

    Text Solution

    |

  6. Find the maximum value of 1+sin((pi)/(4)+theta) +2sin ((pi)/(4)-thet...

    Text Solution

    |

  7. Prove that t a n A+2t a n2A+4t a n4A+8cot8A=cot Adot

    Text Solution

    |

  8. sum(r=1)^(n-1)cos^(2) (rpi)/2 is equal to

    Text Solution

    |

  9. Prove that: (1+sec2theta)(1+sec4theta)(1+sec8theta)(1+sec2^ntheta)=t a...

    Text Solution

    |

  10. Prove that tan alpha+2 tan 2 alpha+2^(2)tan2^(2)alpha+.................

    Text Solution

    |

  11. S=cosecx+cosec 2x+cosec 4x+…+cosec 2nx=cot(x/2)−cot2nx

    Text Solution

    |

  12. The expression (tan(x-(pi)/(2)).cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x...

    Text Solution

    |

  13. The values of cos^2 73^0+cos^2 47^0-sin^2 43^0+sin^2 107^0 is equal t...

    Text Solution

    |

  14. The expression (sin 22^0cos8^0+cos 158^0cos98^0)/(sin 23^0cos7^0+cos 1...

    Text Solution

    |

  15. The two legs of a right triangle are sin theta+sin((3pi)/(2)-theta) an...

    Text Solution

    |

  16. If tantheta=sqrt(a/b)where a , b are positive reals then the value o...

    Text Solution

    |

  17. The expression (sin(alpha+theta)-"sin"(alpha-theta))/(cos(beta-theta)-...

    Text Solution

    |

  18. Exact value of cos 20^0+2sin^2\ \ 55^0-sqrt(2)sin65^0\ is- a.1 b. 1/(...

    Text Solution

    |

  19. If cos(theta+phi)=mcos(theta-phi) ,then tantheta is equal to a.((1+m)...

    Text Solution

    |

  20. If sin theta+"cosec"theta=2, then the value of sin^(8)theta+"cosec"^(...

    Text Solution

    |