Home
Class 12
MATHS
The value of tan^(-1)(1)+cos^(-1)(-1/2)+...

The value of `tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2)` is equal to `pi/4` b.`(5pi)/(12)` c.`(3pi)/4` d. `(13pi)/(12)`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

sin^(-1)(cos((5pi)/4)) is equal to

The value of cos^(-1)(-1)-sin^(-1)(1) is: a. pi b. pi/2 c. (3pi)/2 d. -(3pi)/2

Knowledge Check

  • Value of cos^(-1) (-(1)/(2)) + sin ^(-1)""(1)/(2) is: a) 2 pi b) (pi)/(2) c) pi d) none of these

    A
    `2 pi`
    B
    `(pi)/(2)`
    C
    `pi`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    The value of cos^(-1)(cos((5pi)/3))+sin^(-1)(sin((5pi)/3)) is (a) pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

    tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to(A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

    The value of sin^(-1)(3/(sqrt(73)))+cos^(-1)((11)/(sqrt(146)))+cot^(-1)sqrt(3) is (A) (5pi)/(12) (B) (17pi)/(12) (C) (7pi)/(12) (D) None of these

    The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2

    The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2

    Prove that: sin^(-1) (12/13)+cos^(-1) (4/5)+tan^(-1) (63/16)=pi

    The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6