Home
Class 12
MATHS
(1/y^2 \ ((cos(tan^(-1) y) + y sin(tan^(...

`(1/y^2 \ ((cos(tan^(-1) y) + y sin(tan^(-1) y))/(cot(sin^(-1) y) + tan(sin^(-1) y)) )^2 + y^4)^(1//2)` takes value

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \left( \frac{1}{y^2} \left( \frac{\cos(\tan^{-1} y) + y \sin(\tan^{-1} y)}{\cot(\sin^{-1} y) + \tan(\sin^{-1} y)} \right)^2 + y^4 \right)^{\frac{1}{2}}, \] we will break it down step by step. ### Step 1: Simplify the expression inside the parentheses We need to simplify \[ \frac{\cos(\tan^{-1} y) + y \sin(\tan^{-1} y)}{\cot(\sin^{-1} y) + \tan(\sin^{-1} y)}. \] ### Step 2: Find \(\cos(\tan^{-1} y)\) and \(\sin(\tan^{-1} y)\) Using the right triangle definition, if \(\tan^{-1} y = \theta\), then: - Opposite side = \(y\) - Adjacent side = \(1\) - Hypotenuse = \(\sqrt{y^2 + 1}\) Thus, \[ \cos(\tan^{-1} y) = \frac{1}{\sqrt{y^2 + 1}}, \quad \sin(\tan^{-1} y) = \frac{y}{\sqrt{y^2 + 1}}. \] ### Step 3: Substitute into the expression Now substituting these values into the numerator: \[ \cos(\tan^{-1} y) + y \sin(\tan^{-1} y) = \frac{1}{\sqrt{y^2 + 1}} + y \cdot \frac{y}{\sqrt{y^2 + 1}} = \frac{1 + y^2}{\sqrt{y^2 + 1}}. \] ### Step 4: Find \(\cot(\sin^{-1} y)\) and \(\tan(\sin^{-1} y)\) Using the right triangle definition, if \(\sin^{-1} y = \phi\), then: - Opposite side = \(y\) - Hypotenuse = \(1\) - Base = \(\sqrt{1 - y^2}\) Thus, \[ \cot(\sin^{-1} y) = \frac{\text{Base}}{\text{Opposite}} = \frac{\sqrt{1 - y^2}}{y}, \quad \tan(\sin^{-1} y) = \frac{y}{\sqrt{1 - y^2}}. \] ### Step 5: Substitute into the denominator Now substituting these values into the denominator: \[ \cot(\sin^{-1} y) + \tan(\sin^{-1} y) = \frac{\sqrt{1 - y^2}}{y} + \frac{y}{\sqrt{1 - y^2}}. \] ### Step 6: Combine the fractions To combine the fractions in the denominator: \[ \frac{\sqrt{1 - y^2}}{y} + \frac{y}{\sqrt{1 - y^2}} = \frac{(1 - y^2) + y^2}{y \sqrt{1 - y^2}} = \frac{1}{y \sqrt{1 - y^2}}. \] ### Step 7: Substitute back into the main expression Now we can substitute back into the main expression: \[ \frac{\frac{1 + y^2}{\sqrt{y^2 + 1}}}{\frac{1}{y \sqrt{1 - y^2}}} = \frac{(1 + y^2) y \sqrt{1 - y^2}}{\sqrt{y^2 + 1}}. \] ### Step 8: Square the result Now we square the entire expression: \[ \left( \frac{(1 + y^2) y \sqrt{1 - y^2}}{\sqrt{y^2 + 1}} \right)^2 = \frac{(1 + y^2)^2 y^2 (1 - y^2)}{y^2 + 1}. \] ### Step 9: Add \(y^4\) and simplify Now we add \(y^4\): \[ \frac{(1 + y^2)^2 y^2 (1 - y^2)}{y^2 + 1} + y^4. \] ### Step 10: Factor and simplify After simplification, we find: \[ \frac{(1 + y^2)^2 y^2 (1 - y^2) + y^4 (y^2 + 1)}{y^2 + 1}. \] ### Step 11: Take the square root Finally, we take the square root: \[ \left( \frac{1}{y^2} \left( \text{result} \right) + y^4 \right)^{\frac{1}{2}}. \] ### Final Result After simplification, we find that the expression evaluates to \(1\).
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3)) , then

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a + b) then If 5 sec^(-1) x + 10 sin^(-1) y = 10 (a + b + c) then the value of tan^(-1) x + cos^(-1) (y -1) is

y=tan^(-1)(cos x/(1+sin x))

If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 cos^(-1) (1/8)) , then

ALLEN-INVERSE TRIGONOMETRIC FUNCTIONS-All Questions
  1. The value of cos^(-1)(-1)-sin^(-1)(1) is: a. pi b. pi/2 c. (3pi)/2 d. ...

    Text Solution

    |

  2. The trigonometric equation sin^(-1) x = 2 sin^(-1) a has a solution fo...

    Text Solution

    |

  3. If cos^(-1) x - cos^(-1).(y)/(2) = alpha, then 4x^(2) - 4xy cos alpha ...

    Text Solution

    |

  4. If sin^(-1)(x/5)+cose c^(-1)(5/4)=pi/2 then a value of x is: (1) 1 (2...

    Text Solution

    |

  5. The value of cot(cose c^(-1)5/3+tan^(-1)2/3) is: (1) 6/(17) (2) 3/...

    Text Solution

    |

  6. If x, y, z are in A.P. and t a n^(-1)x ,""t a n^(-1)y"" and ""t a n^...

    Text Solution

    |

  7. Let tan^(-1) y = tan^(-1) x + tan^(-1) ((2x)/(1 -x^(2))), " where " |x...

    Text Solution

    |

  8. Prove that costan^(-1)sincot^(-1)x=sqrt((x^2+1)/(x^2+2))

    Text Solution

    |

  9. If"sin"{cot^(-1)(x+1)}="cos"(tan^(-1)x), then find xdot

    Text Solution

    |

  10. The value of the lim(n->oo)tan{sum(r=1)^ntan^(- 1)(1/(2r^2))} is equal...

    Text Solution

    |

  11. Let (x, y) be such that sin^-1 (ax) + cos^-1 (bxy)=pi/2 If a=1 an...

    Text Solution

    |

  12. Let (x , y) be such that sin^(-1)(a x)+cos^(-1)(y)+cos^(-1)(b x y)=pi/...

    Text Solution

    |

  13. Let (x , y) be such that sin^(-1)(a x)+cos^(-1)(y)+cos^(-1)(b x y)=pi/...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The value of cot(sum(n=1)^23 cot^-1(1+sum(k=1)^n 2k)) is (a) 23/25 (b)...

    Text Solution

    |

  16. (1/y^2 \ ((cos(tan^(-1) y) + y sin(tan^(-1) y))/(cot(sin^(-1) y) + tan...

    Text Solution

    |

  17. lf cos x + cosy-cos z = 0 = sin x + sin y + sin z then cos((x-y)/2)=

    Text Solution

    |

  18. If cos(pi/4-x)cos2x+sinxsin2xsecx=cos x sin 2x sec x+cos(pi/4+x)cos 2x...

    Text Solution

    |

  19. If cot(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)(xsqrt(6))),\ x!=0, then possi...

    Text Solution

    |

  20. Let f:[0, 4pi]to[0, pi]" be difined by "f(x) = cos^(-1)(cos x). The nu...

    Text Solution

    |