Home
Class 11
MATHS
The minimum value of (b^2p1)/c+(c^2p2)/a...

The minimum value of `(b^2p_1)/c+(c^2p_2)/a+(a^2p_3)/b\ ` is

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ALLEN|Exercise All Questions|1 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos

Similar Questions

Explore conceptually related problems

If a x+b y+c z=p , then minimum value of x^2+y^2+z^2 is (p/(a+b+c))^2 (b) (p^2)/(a^2+b^2+c^2) (a^2+b^2+c^2)/(p^2) (d) ((a+b+c)/p)^2

If three positive real numbers a,b ,c are in A.P such that a b c=4 , then the minimum value of b is a) 2^(1//3) b) 2^(2//3) c) 2^(1//2) d) 2^(3//23)

If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

If a,b,c are in H.P , b,c,d are in G.P and c,d,e are in A.P. , then the value of e is (a) (ab^(2))/((2a-b)^(2)) (b) (a^(2)b)/((2a-b)^(2)) (c) (a^(2)b^(2))/((2a-b)^(2)) (d) None of these

Let the lengths of the altitudes from the vertices A(-1, 1), B(5, 2), C(3, -1) of DeltaABC are p_(1), p_(2), p_(3) units respectively then the value of (((1)/(p_(1)))^(2)+((1)/(p_(3)))^(2))/(((1)/(p_(2)))^(2)) is equal to

if ABC is a triangle and tan(A/2), tan(B/2), tan(C/2) are in H.P. Then find the minimum value of cot(A/2)*cot(C/2)

P_(1), P_(2), P_(3) are altitudes of a triangle ABC from the vertices A, B, C and Delta is the area of the triangle, The value of P_(1)^(-1) + P_(2)^(-1) + P_(3)^(-1) is equal to-

If p_(1),p_(2),p_(3) are altitudes of a triangle ABC from the vertices A,B,C and triangle the area of the triangle, then p_(1)^(-2)+p_(2)^(-2)+p_(3)^(-2) is equal to

If a, b, c are in G.P. and b-c, c-a, a-b are in H.P. then find the value of ((a+b+c)^(2))/(b^(2)) .

If a, b, c, d are in G. P., show that the following are also in G. P. b^(2)c^(2), c^(3)a^(2),a^(2)b^(2)

ALLEN-SOLUTION AND PROPERTIES OF TRIANGLE-All Questions
  1. If p1, p2, p3, be the altitudes of a triangle ABC from the vertices A,...

    Text Solution

    |

  2. The value of (cosA)/(P1)+(cosB)/(P2)+(cosC)/(P3) is

    Text Solution

    |

  3. The minimum value of (b^2p1)/c+(c^2p2)/a+(a^2p3)/b\ is

    Text Solution

    |

  4. Find the value of a if the value of 2x^2+3x-a is equal to 6 when x=-2.

    Text Solution

    |

  5. Statement - I : If two sides of a triangle are 4 and 5, then its ar...

    Text Solution

    |

  6. Statement I perimeter of a regular pentagon inscribed in a circle with...

    Text Solution

    |

  7. Statement - I : The statement that circumradius and inradius of a t...

    Text Solution

    |

  8. Statement - I : In any triangle A B C , the minimum values of (r1+r2+r...

    Text Solution

    |

  9. Statement - I : Area of triangle having sides greater than 9 can be ...

    Text Solution

    |

  10. Let An be the area that is outside a n-sided regular polygon and insid...

    Text Solution

    |

  11. If n=4\ then Bn is equal to : R^2((4-pi))/2 (b) (R^2(4-pisqrt(2)))/2 ...

    Text Solution

    |

  12. (An)/(Bn) is equal to (theta=pi/n) (2theta-sin2theta)/(sin2theta-thet...

    Text Solution

    |

  13. Prove that : 4\ R\ sin AsinB\ sin C=acosA+b\ cos B+c cosCdot

    Text Solution

    |

  14. Prove that : acosB\ cos C+bcosCcosA+c\ cos AcosB=/R

    Text Solution

    |

  15. If p1, p2, p3, be the altitudes of a triangle ABC from the vertices A,...

    Text Solution

    |

  16. Prove that : (a b c)/scosA/2cosB/2cosC/2=

    Text Solution

    |

  17. In a DeltaABC, if B=3C, prove that (i) cosC=sqrt(((b+c)/(4c)))" (i...

    Text Solution

    |

  18. A B C is a triangle. D is the mid point of B Cdot If A D is perpendicu...

    Text Solution

    |

  19. Let 1 lt m lt 3. ln a Delta ABC, if 2b= (m+1) a and cos A=1/2 sqrt(((m...

    Text Solution

    |

  20. Prove that : 1/(r1)+1/(r2)+1/(r3)=1/r

    Text Solution

    |