Home
Class 11
MATHS
If sides a , b , c of the triangle A B C...

If sides `a , b , c` of the triangle `A B C` are in `AdotPdot` , then prove that `sin^2A/2cos e c\ 2A ;sin^2B/2cos e c\ 2B\ ;sin^2C/2cos e c\ 2C` are in H.P.

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ALLEN|Exercise All Questions|1 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos

Similar Questions

Explore conceptually related problems

In A B C , prove that cos e c A/2+cos e c B/2+cos e c C/2geq6.

In triangle A B C , prove that cos e c A/2+cos e c B/2+cos e c C/2geq6.

Prove: cot^2A cos e c^2B-cot^2B cos e c^2A=cot^2A-cot^2B .

Prove that (cos^(2)A-sin^(2)B)+1-cos^(2)C

If A + B + C = 180^@ , then prove that sin 2 A+ sin 2B + sin 2C = 4 sin A sin B sin C

If A, B and C are interior angles of a triangle ABC, then show that "sin"((B+C)/2)=cos(A/2) .

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

In any triangle A B C , prove that following: sin((B-C)/2)=(b-c)/a cos (A/2)

If A+B+C=2pi , prove that : cos^2B+cos^2C-sin^2A-2cosA cosB cosC=0 .

Prove: (cos e c\ A)/(cos e c\ A-1)+(cos e c\ A)/(cos e c\ A+1)=2sec^2A