Home
Class 12
MATHS
Let a^((log)b x)=c\ w h e r e\ a ,\ b ,\...

Let `a^((log)_b x)=c\ w h e r e\ a ,\ b ,\ c\ &\ x\ ` are parameters. On the basis of above information, answer the following questions: If `b=(log)_(sqrt(3))3,\ c=2(log)_bsqrt(b)` and `sintheta`=a (where x >1) then `theta` can be a.`pi/4` b. `\ (3pi)/2` c.`\ pi/2` d. `0`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Comprehension 1 Let a^((log)_b x)=c\ w h e r e\ a ,\ b ,\ c\ &\ x\ are parameters. On the basis of above information, answer the following questions: If a=2\ x=a^((log)_5 25)&\ c=sqrt(2) , then b is- a. 2 b. \ 16 c. \ 12 d. 2

Comprehension 1 Let a^((log)_b x)=c\ w h e r e\ a ,\ b ,\ c\ &\ x\ are parameters. On the basis of above information, answer the following questions: If a=2\ x=a^((log)_5 25)&\ c=sqrt(2) , then b is a. 2 b. \ 16 c. \ 12 d. 2

Comprehension 1 Let a^((log)_b x)=c\ w h e r e\ a ,\ b ,\ c\ &\ x\ are parameters. On the basis of above information, answer the following questions: If a=b=2xx3^sin^2theta+1/(1+tan^(2theta))\ &\ c=(4\ t a ntheta)/(sqrt(sec^2theta-1))(w h e r e\ theta lies in Ist Quadrant ) , then x is- a. 3 b. -3 c. \ 0 d. 4

If costheta+sqrt(3)sintheta=2, then theta= a. pi//3 b. 2pi//3 c. 4pi//3 d. 5pi//3

The number of roots of the equation (log)_(3sqrt("x"))x+(log)_(3x)sqrt(x)=0 is 1 (b) 2 (c) 3 (d) 0

The number of solutions of (log)_4(x-1)=(log)_2(x-3) is (a) 3 (b) 1 (c) 2 (d) 0

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx), is pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

For 0 cos^(-1)(sintheta) is true when theta belongs to (a) (pi/4,pi) (b) (pi,(3pi)/2) (c) (pi/4,(3pi)/4) (d) ((3pi)/4,2pi)

The domain of the function f(x)=(log)_e{(log)_(|sinx|)(x^2-8x+23)-{3/((log)_2|sinx|)} contains which of the following interval(s)? 3,pi) (b) (pi,(3pi)/2) (c) ((3pi)/2,5) (d) none of these

ALLEN-LOGARITHMS-All Questions
  1. Comprehension 1 Let a^((log)b x)=c\ w h e r e\ a ,\ b ,\ c\ &\ x...

    Text Solution

    |

  2. Comprehension 1 Let a^((log)b x)=c\ w h e r e\ a ,\ b ,\ c\ &\ x...

    Text Solution

    |

  3. Let a^((log)b x)=c\ w h e r e\ a ,\ b ,\ c\ &\ x\ are parameters. O...

    Text Solution

    |

  4. Comprehension 2 In comparison of two numbers, logarithm of small...

    Text Solution

    |

  5. Comprehension 2 In comparison of two numbers, logarithm of small...

    Text Solution

    |

  6. Comprehension 3 If P is the non negative characteristic of (log)(10...

    Text Solution

    |

  7. Comprehension 3 If P is the non negative characteristic of (log)(10...

    Text Solution

    |

  8. If (log)(10)33. 8=1. 5289 ,\ t h e n(log)(10)0. 338 is- a. 1 .5289 b...

    Text Solution

    |

  9. Prove that ((log)a N)/((log)(a b)N)=1+(log)a b

    Text Solution

    |

  10. log(1//3)sqrt(729*root(3)(9^(- 1)*27^(-4//3))) is equal to

    Text Solution

    |

  11. Compute the following a^(((log)b((log)a N))/((log)b\ \ a))

    Text Solution

    |

  12. Prove the identity; (log)a Ndot(log)b N+(log)b Ndot(log)c N+(log)c Ndo...

    Text Solution

    |

  13. Which is smaller? 2 or (log(("e"-1))2+log2(e-1))

    Text Solution

    |

  14. Solve for x :(l g)4(log)3(log)2x=0

    Text Solution

    |

  15. Find the value of 49^A+5^B w h e r e\ A=1-(log)7 2\ &\ B=-(log)5 4.

    Text Solution

    |

  16. If 4^A+9^B=10^C ,\ where A=(log)(16)4,\ B=(log)3 9\ &\ C=(log)x 83 th...

    Text Solution

    |

  17. Solve the system of equations: (log)a x(log)a(x y z)=48(log)a y loga(x...

    Text Solution

    |

  18. The vlaue of (81^((1)/(log(5)9))+3^((3)/(log(sqrt(6))3)))/(409)((sqrt(...

    Text Solution

    |

  19. Compute the following 56+(log)(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)(1//2)...

    Text Solution

    |

  20. The value of 4^(5log(4sqrt(2)(3-sqrt(6))-6log(8)(sqrt(3)-sqrt(2)))) is

    Text Solution

    |