Home
Class 11
PHYSICS
If a compressive force of 3.0xx10^(4)N i...

If a compressive force of `3.0xx10^(4)N` is exerted on the end of a 20 cm long bone of cross-sectional area `3.6cm^(2)` (i) will the bone break and (ii) if not by how much length does it shorten? Given compresive strength of bone `=7.7xx10^(8)N//m^(2)` and young's modulus of bone `=1.5xx10^(10)N//m^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine if the bone will break under the applied compressive force and, if it does not break, calculate how much it shortens. ### Step-by-Step Solution: 1. **Identify the Given Values:** - Compressive force, \( F = 3.0 \times 10^4 \, \text{N} \) - Length of the bone, \( L = 20 \, \text{cm} = 0.2 \, \text{m} \) - Cross-sectional area, \( A = 3.6 \, \text{cm}^2 = 3.6 \times 10^{-4} \, \text{m}^2 \) - Compressive strength of bone, \( \sigma_{\text{strength}} = 7.7 \times 10^8 \, \text{N/m}^2 \) - Young's modulus of bone, \( Y = 1.5 \times 10^{10} \, \text{N/m}^2 \) 2. **Calculate the Applied Stress:** The applied stress \( \sigma_{\text{applied}} \) can be calculated using the formula: \[ \sigma_{\text{applied}} = \frac{F}{A} \] Substituting the values: \[ \sigma_{\text{applied}} = \frac{3.0 \times 10^4 \, \text{N}}{3.6 \times 10^{-4} \, \text{m}^2} = 8.33 \times 10^7 \, \text{N/m}^2 \] 3. **Check if the Bone Will Break:** Compare the applied stress with the compressive strength of the bone: \[ \sigma_{\text{applied}} = 8.33 \times 10^7 \, \text{N/m}^2 < \sigma_{\text{strength}} = 7.7 \times 10^8 \, \text{N/m}^2 \] Since the applied stress is less than the compressive strength, the bone will **not break**. 4. **Calculate the Change in Length:** To find the change in length \( \Delta L \), we use the formula derived from Young's modulus: \[ Y = \frac{\sigma_{\text{applied}}}{\frac{\Delta L}{L}} \] Rearranging gives: \[ \Delta L = \frac{\sigma_{\text{applied}} \cdot L}{Y} \] Substituting the known values: \[ \Delta L = \frac{8.33 \times 10^7 \, \text{N/m}^2 \cdot 0.2 \, \text{m}}{1.5 \times 10^{10} \, \text{N/m}^2} \] Calculating this: \[ \Delta L = \frac{1.666 \times 10^7}{1.5 \times 10^{10}} = 1.11 \times 10^{-3} \, \text{m} = 1.11 \, \text{mm} \] ### Final Answers: (i) The bone will **not break**. (ii) The bone will shorten by approximately **1.11 mm**.
Promotional Banner

Topper's Solved these Questions

  • ELASTICITY, SURFACE TENSION AND FLUID MECHANICS

    ALLEN|Exercise Exercise 4 A (Surface Tension)|5 Videos
  • ELASTICITY, SURFACE TENSION AND FLUID MECHANICS

    ALLEN|Exercise Exercise 4 A (Fluid Statics)|13 Videos
  • ELASTICITY, SURFACE TENSION AND FLUID MECHANICS

    ALLEN|Exercise Exercise 3 (Comprehension based questions)|24 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos
  • ERROR AND MEASUREMENT

    ALLEN|Exercise Part-2(Exercise-2)(B)|22 Videos