Home
Class 12
PHYSICS
Two beams of light having intensities I ...

Two beams of light having intensities I and 4I intefere to produce a fringe pattern on a screen. The phase difference between the beams is `pi // 2` at point A and `pi` at point B. Then the difference between the resultant intensities at A and B is

Text Solution

Verified by Experts

Resultant intensity `I=I_(1)+I_(2)+2sqrt(I_(1))sqrt(I_(1))cosphi`
Resultant intensity at point A is `I_(A)=I+4I+2sqrt(I)sqrt(4I)cos((pI)/(2))=5I`
Resultant intensity at point `B,I_(B)=I+4I+2sqrt(I)sqrt(4I)cos2pi=9I(becausecos2pi=1)thereforeI_(B)-I_(A)=91-51implies41`
Promotional Banner

Topper's Solved these Questions

  • WAVE OPTICS

    ALLEN|Exercise Example 1|1 Videos
  • WAVE OPTICS

    ALLEN|Exercise Example 2|1 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos

Similar Questions

Explore conceptually related problems

Two beams of ligth having intensities I and 4I interface to produce a fringe pattern on a screen. The phase difference between the beams is (pi)/(2) at point A and pi at point B. Then the difference between the resultant intensities at A and B is

Two beam of light having intensities I and 4I interfere to produce a fringe pattern on a screen. The phase difference between the beams is (pi)/(2) at point A and pi at point B. Then the difference between resultant intensities at A and B is : (2001 , 2M)

Two beams of light having intensities I and 4I interferer to produce a fringe pattern on a screen .the phase difference between the beam is π/2 at a point A and 2π at a point B.Then find out the difference between the resultant intensitites at A and B.

Interference fringes are produced on a screen by using two light sources of intensities / and 9/. The phase difference between the beams pi/2 is at point P and pi at point Q on the screen. The difference between the resultant intensities at point P and Q is

Two beams of light having intensities 9I and 4I interfere to produce fringe pattern on a screen P, Q and R are three points on the screen at which the phase differences between the interfering beams are 30^(@), 45^(@)" and "60^(@) and the intensities are I_(P), I_(Q)" and "I_(R ) respectivley. Arrange the diffrence between the intensities in ascending order

Two coherent sources of light interfere and produce fringe pattern on a screen . For central maximum phase difference between two waves will be

Maximum intensity in YDSE is I_0 . Find the intensity at a point on the screen where (a) The phase difference between the two interfering beams is pi/3. (b) the path difference between them is lambda/4 .

Maximum intensity in YDSE is I_0 . Find the intensity at a point on the screen where (a) The phase difference between the two interfering beams is pi/3. (b) the path difference between them is lambda/4 .

Two waves of intensity I and 9I are superimposed in such a way that resultant Intensity is 7I .Find the phase difference between them ?

Two coherent light beams of intensities I and 4I produce interference pattern. The intensity at a point where the phase difference is zero, will b: