Home
Class 12
PHYSICS
In interference pattern if the slit widt...

In interference pattern if the slit widths are in the ratio `1:9` then find out the ratio of minimum and maximum intensity
Slit width ratio `(w_(1))/(w_(2))=(1)/(9)`
`because(I_(1))/(I_(2))=(w_(1))/(w_(2))=(a_(1)^(2))/(a_(2)^(2))=(1)/(9)implies(a_(1))/(a_(2))=(1)/(3)implies3a_(1)=a_(2)`
`therefore(I_(min))/(I_(max))=((a_(1)-a_(2))^(2))/((a_(1)+a_(2))^(2))=((a_(1)-3a_(1))^(2))/((a_(1)+3a_(1))^(2))=(4)/(16)=1:4`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • WAVE OPTICS

    ALLEN|Exercise Example 1|1 Videos
  • WAVE OPTICS

    ALLEN|Exercise Example 2|1 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos

Similar Questions

Explore conceptually related problems

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) -a_(2))^(2) = (a_(1)-a_(4))^(2)

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

The asymptotes of the hyperbola (x^(2))/(a_(1)^(2))-(y^(2))/(b_(1)^(2))=1 and (x^(2))/(a_(2)^(2))-(y^(2))/(b_(2)^(2))=1 are perpendicular to each other. Then, (a) a_(1)/a_(2)=b_(1)/b_(2) (b) a_(1)a_(2)=b_(1)b_(2) (c) a_(1)a_(2)+b_(1)b_(2)=0 (d) a_(1)-a_(2)=b_(1)-b_(2)

If the sequence a_(1),a_(2),a_(3),…,a_(n) is an A.P., then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(2n-1)^(2)-a_(2n)^(2)=n/(2n-1)(a_(1)^(2)-a_(2n)^(2))

the value of the determinant |{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(2)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}| is

Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))

if (5x^(2) +2)/(x^(3)+x)=(A_(1))/(x)+(A_(2)x+A_(3))/(x^(2)+1), then (A_(1), A_(2), A_(3))=

Let y = 1 + (a_(1))/(x - a_(1)) + (a_(2) x)/((x - a_(1))(x - a_(2))) + (a_(3) x^(2))/((x - a_(1))(x - a_(2))(x - a_(3))) + … (a_(n) x^(n - 1))/((x - a_(1))(x - a_(2))(x - a_(3))..(x - a_(n))) Find (dy)/(dx)

If a_(1),a_(2),a_(3),"........",a_(n) are in AP with a_(1)=0 , prove that (a_(3))/(a_(2))+(a_(4))/(a_(3))+"......"+(a_(n))/(a_(n-1))-a_(2)((1)/(a_(2))+(1)/(a_(3))"+........"+(1)/(a_(n-2)))=(a_(n-1))/(a_(2))+(a_(2))/(a_(n-1)) .

If (1^(2)-a_(1))+(2^(2)-a_(2))+(3^(2)-a_(3))+…..+(n^(2)-a_(n))=(1)/(3)n(n^(2)-1) , then the value of a_(7) is