Home
Class 11
PHYSICS
A thin rod of length 6 m is lying along ...

A thin rod of length 6 m is lying along the x-axis with its ends at x=0 and x=6m. Its linear density *mass/length ) varies with x as `kx^(4)`. Find the position of centre of mass of rod in meters.

Text Solution

Verified by Experts

The correct Answer is:
`5 m`

`x_(cm) = (intxdm)/(intdm) = (int_(0)^(6) x(kx^(4)dx))/(int_(0)^(6) (kx^(4)dx)) = (int_(0)^(6)x^(5)dx)/(int_(0)^(6)x^(4)dx) = ((x^(6)/(6))_(0)^(6))/((x^(5)/(5))_(0)^(6))5m`
Promotional Banner

Topper's Solved these Questions

  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-I|40 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-II|43 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-IV ASSERTION & REASON|11 Videos
  • ELASTICITY, SURFACE TENSION AND FLUID MECHANICS

    ALLEN|Exercise Exercise 5 B (Integer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

A thin rod of length L is lying along the x-axis with its ends at x=0 and x=L its linear (mass/length) varies with x as k(x/L)^n , where n can be zero of any positive number. If to position x_(CM) of the centre of mass of the rod is plotted against 'n', which of the following graphs best apporximates the dependence of x_(CM) on n?

A rod of length L is placed along the x-axis between x=0 and x=L . The linear mass density (mass/length) rho of the rod varies with the distance x from the origin as rho=a+bx . Here, a and b are constants. Find the position of centre of mass of this rod.

If linear density of a rod of length 3m varies as lambda = 2 + x, them the position of the centre of gravity of the rod is

A rod of length L is placed along the X-axis between x=0 and x=L . The linear density (mass/length) rho of the rod varies with the distance x from the origin as rho=a+bx. a.) Find the SI units of a and b b.) Find the mass of the rod in terms of a,b, and L.

A non–uniform thin rod of length L is placed along x-axis as such its one of ends at the origin. The linear mass density of rod is lambda=lambda_(0)x . The distance of centre of mass of rod from the origin is :

The density of a thin rod of length l varies with the distance x from one end as rho=rho_0(x^2)/(l^2) . Find the position of centre of mass of rod.

Mass is non-uniformly distributed over the rod of length l, its linear mass density varies linearly with length as lamda=kx^(2) . The position of centre of mass (from lighter end) is given by-

A metal rod extends on the x- axis from x=0m to x=4m . Its linear density rho (mass // length) id not uniform and varies with the distance x from the origin according to equation rho=(1.5+2x)kg//m What is the mass of rod :-

Two uniform rods A and B of lengths 5 m and 3m are placed end to end. If their linear densities are 3 kg/m and 2 kg/m, the position of their centre of mass from their interface is

A straight rod of length L has one of its end at the origin and the other at X=L . If the mass per unit length of the rod is given by Ax where A is constant, where is its centre of mass?

ALLEN-CENTRE OF MASS-EXERCISE-V B
  1. A thin rod of length 6 m is lying along the x-axis with its ends at x=...

    Text Solution

    |

  2. Two particles of mases m(1) and m(2) in projectile motion have velocit...

    Text Solution

    |

  3. Two blocks of masses 10 kg and 4 kg are connected by a spring of negli...

    Text Solution

    |

  4. A particle moves in the xy plane under the influence of a force such t...

    Text Solution

    |

  5. Two small particles of equal masses start moving in opposite direction...

    Text Solution

    |

  6. Look at the drawing given in the figure which has been drawn with ink ...

    Text Solution

    |

  7. A particle of mass m is projected from the ground with an initial spee...

    Text Solution

    |

  8. A tennis ball dropped on a horizontal smooth surface , it because back...

    Text Solution

    |

  9. Two balls having linear momenta vecp(1)=phati and vecp(2)=-phati, und...

    Text Solution

    |

  10. Assertion: In and elastic collision between two bodies, the relative s...

    Text Solution

    |

  11. Statement-1: if there is no external torque on a body about its centre...

    Text Solution

    |

  12. A small block of mass M moves on a frictionless surface of an inclined...

    Text Solution

    |

  13. A small block of mass M moves on a frictionless surface of an inclined...

    Text Solution

    |

  14. A small block of mass M moves on a frictionless surface of an inclined...

    Text Solution

    |

  15. Two blocks of masses 2kg and M are at rest on an inclined plane and ar...

    Text Solution

    |

  16. A car P is moving with a uniform speed 5sqrt(3) m//s towards a carriag...

    Text Solution

    |

  17. A particle of mass m, moving in a circular path of radius R with a co...

    Text Solution

    |

  18. Two point masses m1 and m2 are connected by a spring of natural length...

    Text Solution

    |

  19. A rectangular plate of mass m and dimension a × b is held in horizonta...

    Text Solution

    |

  20. Three objects A, B and C are kept in a straight line on a frictionless...

    Text Solution

    |