Home
Class 12
MATHS
Find : cos[2sin^(-1)√((1-x)/2) ]=...

Find : `cos[2sin^(-1)√((1-x)/2) ]=`

A

`1`

B

`(1)/(4)`

C

`(1)/(2)`

D

`16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos[2 \sin^{-1}(\sqrt{\frac{1-x}{2}})] \), we will follow these steps: ### Step 1: Let \( \alpha = \sin^{-1}(\sqrt{\frac{1-x}{2}}) \) We can rewrite the expression as: \[ \cos(2\alpha) \] ### Step 2: Use the double angle formula for cosine The double angle formula for cosine is: \[ \cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) \] ### Step 3: Find \( \sin(\alpha) \) and \( \cos(\alpha) \) From our definition of \( \alpha \): \[ \sin(\alpha) = \sqrt{\frac{1-x}{2}} \] To find \( \cos(\alpha) \), we use the Pythagorean identity: \[ \cos^2(\alpha) + \sin^2(\alpha) = 1 \] Substituting \( \sin(\alpha) \): \[ \cos^2(\alpha) + \left(\sqrt{\frac{1-x}{2}}\right)^2 = 1 \] \[ \cos^2(\alpha) + \frac{1-x}{2} = 1 \] \[ \cos^2(\alpha) = 1 - \frac{1-x}{2} \] \[ \cos^2(\alpha) = \frac{2}{2} - \frac{1-x}{2} = \frac{2 - (1-x)}{2} = \frac{1+x}{2} \] ### Step 4: Substitute \( \sin(\alpha) \) and \( \cos(\alpha) \) into the double angle formula Now substituting back into the double angle formula: \[ \cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) \] \[ = \frac{1+x}{2} - \left(\sqrt{\frac{1-x}{2}}\right)^2 \] \[ = \frac{1+x}{2} - \frac{1-x}{2} \] \[ = \frac{(1+x) - (1-x)}{2} = \frac{1+x - 1 + x}{2} = \frac{2x}{2} = x \] ### Final Result Thus, we have: \[ \cos[2 \sin^{-1}(\sqrt{\frac{1-x}{2}})] = x \]
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    ALLEN|Exercise part-2 Mathematics|18 Videos
  • TEST PAPERS

    ALLEN|Exercise part-2 Mathematic|18 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos

Similar Questions

Explore conceptually related problems

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

Evaluate : tan^(-1){2cos(2sin^(-1)""(1)/2)}

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

For the principal values, evaluate each of the following : (i) cos^(-1) (1/2)+2sin^(-1) (1/2) (ii) cos^(-1)(1/2)-2sin^(-1)(-1/2)

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}]

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}] .

Find the value of the following: tan [1/2[sin^(-1) ((2x)/(1+x^2))+cos^(-1) ((1-y^2)/(1+y^2))]], |x| 0 and x y < 1 .

Find the principal value of cos^(-1){sin"[cos^(-1)(1/2)]}