Home
Class 12
MATHS
2sin^2 ((3π)/4)+2cos^ 2 (π/4) +2sec^2 (π...

`2sin^2 ((3π)/4)+2cos^ 2 (π/4) +2sec^2 (π/3) =10`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    ALLEN|Exercise part-2 Mathematics|18 Videos
  • TEST PAPERS

    ALLEN|Exercise part-2 Mathematic|18 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos

Similar Questions

Explore conceptually related problems

2sin^2 (3pi)/4 +2cos^2 pi/4 +2sec^2 pi/3=10

Prove that: 2sin^2(3pi/4)+2cos^2(pi/4)+2sec^2(pi/3)=10

Prove that: 2sin^2 (3pi/4)+2cos^2(pi/4)+s e c^2pi/3=10

Show that 2sin^2 (π/6) +cosec^2(7π/6)cos^2(π/3)= 3/2 ​

Evaluate the following: i) cos120^(@)sin390^(@)+cos330^(@)cos150^(@) ii) sin^(2)(3pi)/(4)+cos^(2)pi/4+sec^(2)pi/3

Show that: 2(cos^2 45°+tan^2 60°)-6(sin^2 45°-tan^2 30°)=6 (ii) 2(cos^4 60°+sin^4 30°)-(tan^2 60°+cot^2 45°)+3sec^2 30°=1/4

The value of cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec^-1sqrt2)

Evaluate : int_(0)^(pi) (dx)/(5+4cosx) . a) π b) π/2 c) π/3 d) π/4

The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)sqrt2)} is

The angle between two vectors vec(a) and vec(b) with magnitudes sqrt(3) and 4, respectively and vec(a). vec(b) = 2 sqrt(3) is: a) 2π/3 b) π/2 c) π/3 d) π/6