Home
Class 12
MATHS
f(n)=sum(r=1)^(n) [r^(2)(""^(n)C(r)-""^(...

`f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))]`, then

A

`f(30)=960`

B

`f(21)=483`

C

`f(16)=64`

D

`f(11)=44`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the function \( f(n) \) defined as: \[ f(n) = \sum_{r=1}^{n} \left[ r^2 \left( \binom{n}{r} - \binom{n}{r-1} \right) + (2r + 1) \binom{n}{r} \right] \] ### Step 1: Simplifying the Summation We can rewrite the function as: \[ f(n) = \sum_{r=1}^{n} \left[ r^2 \binom{n}{r} - r^2 \binom{n}{r-1} + (2r + 1) \binom{n}{r} \right] \] This can be separated into two summations: \[ f(n) = \sum_{r=1}^{n} r^2 \binom{n}{r} + \sum_{r=1}^{n} (2r + 1) \binom{n}{r} - \sum_{r=1}^{n} r^2 \binom{n}{r-1} \] ### Step 2: Evaluating Each Summation The first term \( \sum_{r=1}^{n} r^2 \binom{n}{r} \) can be evaluated using the identity: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} = n(n-1)2^{n-2} + n2^{n-1} \] The second term \( \sum_{r=1}^{n} (2r + 1) \binom{n}{r} \) can be simplified as follows: \[ \sum_{r=1}^{n} (2r + 1) \binom{n}{r} = 2 \sum_{r=1}^{n} r \binom{n}{r} + \sum_{r=1}^{n} \binom{n}{r} \] Using the identities: \[ \sum_{r=0}^{n} r \binom{n}{r} = n2^{n-1} \] \[ \sum_{r=0}^{n} \binom{n}{r} = 2^n \] We can substitute these values into our expression. ### Step 3: Combining the Results After substituting the results into the expression for \( f(n) \), we can combine the terms. The third summation \( \sum_{r=1}^{n} r^2 \binom{n}{r-1} \) can also be evaluated similarly, leading to a cancellation of terms. ### Step 4: Final Expression After simplification, we arrive at: \[ f(n) = (n + 1)^2 - 1 \] Thus, we can conclude that: \[ f(n) = n^2 + 2n \] ### Step 5: Verification To verify, we can substitute specific values of \( n \): - For \( n = 30 \): \[ f(30) = 31^2 - 1 = 961 - 1 = 960 \] - For \( n = 21 \): \[ f(21) = 22^2 - 1 = 484 - 1 = 483 \] - For \( n = 16 \): \[ f(16) = 17^2 - 1 = 289 - 1 = 288 \] - For \( n = 11 \): \[ f(11) = 12^2 - 1 = 144 - 1 = 143 \] ### Conclusion The final result is: \[ f(n) = n^2 + 2n \]

To solve the given problem, we need to analyze the function \( f(n) \) defined as: \[ f(n) = \sum_{r=1}^{n} \left[ r^2 \left( \binom{n}{r} - \binom{n}{r-1} \right) + (2r + 1) \binom{n}{r} \right] \] ### Step 1: Simplifying the Summation ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If f(x)=sum_(r=1)^(n) { r^(2) (""^(n)C_(r)- ^(n) C_(r-1))+ (2r+1) ^(n) C_(r)} and f(30)=30(2)^(lambda), then the value of lambda is

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

For ""^(n) C_(r) + 2 ""^(n) C_(r-1) + ""^(n) C_(r-2) =

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

ALLEN-TEST PAPERS-part-2 Mathematics
  1. Number of necklaces can be formed with 4 identical beads and two disti...

    Text Solution

    |

  2. f(n)=sum(r=1)^(n) [r^(2)(""^(n)C(r)-""^(n)C(r-1))+(2r+1)(""^(n)C(r ))]...

    Text Solution

    |

  3. Area formed between lines y = nx +(1)/(n), y = -(1)/(n)x-n(n epsilon I...

    Text Solution

    |

  4. x^(2)+y^(2)-4x-4y+7=0 and x^(2)+y^(2)4x+4y+7=0 are equation of excircl...

    Text Solution

    |

  5. n' similar balls each of weight w, are weighted in pairs. The sum of t...

    Text Solution

    |

  6. A number is chosen at random from the number 10to99. By seeing the num...

    Text Solution

    |

  7. If the circle C(1) touches x-axis and the line y=xtantheta(tanthetagt...

    Text Solution

    |

  8. M is the mid-point of a line segment AB. AXB and MYB are equilateral ...

    Text Solution

    |

  9. Show that the points (a,a),(−a,−a) and (− 3a​, 3a ) are the vertices ...

    Text Solution

    |

  10. Prove that the points A(1,−3),B(−3,0) and C(4,1) are the vertices of a...

    Text Solution

    |

  11. Find the principal solution of the following equation: sinx= √3/2

    Text Solution

    |

  12. If sinθ= a/√(a^2+b^2) , 0<θ<90 , find the values of cosθ and t...

    Text Solution

    |

  13. If 2cosx+sinx=1, then the sum of the values of 7cosx+6sinx is

    Text Solution

    |

  14. Let 2(1+x^(3))^(100)=sum(r=0)^(300) {a(r)x^(r)-cos.(rpi)/(2)},"if"sum(...

    Text Solution

    |

  15. Let N=alphaalphaalphaalphaalphaalpha be a 6 digit number (all digit re...

    Text Solution

    |

  16. If tan(cotx)=cot(tanx) , then sin2x is equal to

    Text Solution

    |

  17. If the papers of 4 students randomly distributed for checking among 7 ...

    Text Solution

    |

  18. If alpha,beta are the roots of the equation x^(2)+4x+p=0, where =Sigma...

    Text Solution

    |