Home
Class 12
MATHS
The solution set of inequality (tan^(-...

The solution set of inequality
`(tan^(-1)x)(cot^(-1)x)-(tan^(-1)x)(1+(pi)/(2))-2cot^(-1)x+2(1+(pi)/(2))gtlim_(yrarr-oo)[sec^(-1)y-(pi)/(2)]` is (where [ . ]denotes the G.I.F.)

A

`(tan1, tan2)`

B

`(-cot1, cot2)`

C

`(-tan1, tan2)`

D

`(-tan1, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \[ (\tan^{-1} x)(\cot^{-1} x) - (\tan^{-1} x)(1 + \frac{\pi}{2}) - 2\cot^{-1} x + 2(1 + \frac{\pi}{2}) > \lim_{y \to -\infty} \left[ \sec^{-1} y - \frac{\pi}{2} \right] \] we will break it down step by step. ### Step 1: Evaluate the Right-Hand Side First, we need to evaluate the limit on the right-hand side: \[ \lim_{y \to -\infty} \left[ \sec^{-1} y - \frac{\pi}{2} \right] \] As \( y \to -\infty \), \( \sec^{-1} y \) approaches \( \frac{\pi}{2} \). Therefore, \[ \sec^{-1}(-\infty) = \frac{\pi}{2} \] Thus, the limit becomes: \[ \lim_{y \to -\infty} \left[ \sec^{-1} y - \frac{\pi}{2} \right] = \frac{\pi}{2} - \frac{\pi}{2} = 0 \] ### Step 2: Rewrite the Inequality Now we can rewrite the inequality: \[ (\tan^{-1} x)(\cot^{-1} x) - (\tan^{-1} x)(1 + \frac{\pi}{2}) - 2\cot^{-1} x + 2(1 + \frac{\pi}{2}) > 0 \] ### Step 3: Factor the Expression Let's factor out common terms. We can take \( \cot^{-1} x \) common from the first and third terms, and \( 1 + \frac{\pi}{2} \) from the second and fourth terms: \[ \cot^{-1} x (\tan^{-1} x - 2) + 2(1 + \frac{\pi}{2}) - \tan^{-1} x(1 + \frac{\pi}{2}) > 0 \] ### Step 4: Further Simplify Now, we can rearrange the terms: \[ (\tan^{-1} x - 2)(\cot^{-1} x - (1 + \frac{\pi}{2})) > 0 \] ### Step 5: Identify Critical Points The critical points occur when: 1. \( \tan^{-1} x - 2 = 0 \) which gives \( \tan^{-1} x = 2 \) or \( x = \tan(2) \) 2. \( \cot^{-1} x - (1 + \frac{\pi}{2}) = 0 \) gives \( \cot^{-1} x = 1 + \frac{\pi}{2} \) or \( x = \cot(1 + \frac{\pi}{2}) \) ### Step 6: Analyze the Intervals We need to analyze the sign of the expression in the intervals defined by the critical points: 1. For \( x < \tan(2) \) 2. For \( \tan(2) < x < \cot(1 + \frac{\pi}{2}) \) 3. For \( x > \cot(1 + \frac{\pi}{2}) \) ### Step 7: Determine the Solution Set After testing the intervals, we find that the expression is positive in the intervals where: \[ \tan^{-1} x \in (-1, 2) \] ### Step 8: Convert Back to x Finally, we convert the intervals back to \( x \): 1. \( \tan^{-1}(-1) < x < \tan^{-1}(2) \) 2. This gives us \( -\tan(1) < x < \tan(2) \) Thus, the solution set is: \[ x \in (-\tan(1), \tan(2)) \]

To solve the inequality \[ (\tan^{-1} x)(\cot^{-1} x) - (\tan^{-1} x)(1 + \frac{\pi}{2}) - 2\cot^{-1} x + 2(1 + \frac{\pi}{2}) > \lim_{y \to -\infty} \left[ \sec^{-1} y - \frac{\pi}{2} \right] \] we will break it down step by step. ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The solution set of the inequality tan^(-1)x+sin^(-1)x ge (pi)/(2) is

The solution set of inequality ( cot^(-1) x) (tan^(-1) x) + (2 - pi/2) cot^(-1) x - 3 tan^(-1) x - 3 ( 2 - pi/2) gt 0 , is

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2 is:

Solve: 5tan^(-1)x+3cot^(-1)x=2pi

The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2)cot^(-1)x-3tan^(-1)x-3(2-pi/2)>0 is (a , b), then the value of cot^(-1)a+cot^(-1)b is____

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x =

Solution(s) of the equation sin(-pi/3+tan^(-1)x+cot^(-1)x)=1/2 is/are

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

ALLEN-TEST PAPERS-part-2 Mathematics
  1. F(x)=x^(5)+log,(x+sqrt(1+x^(2))), Then for all alpha, beta in R such t...

    Text Solution

    |

  2. If x=2 is a real root of cubic equation f (x) = 3x^(3)+bx^(2)+bx+3=0. ...

    Text Solution

    |

  3. The solution set of inequality (tan^(-1)x)(cot^(-1)x)-(tan^(-1)x)(1+...

    Text Solution

    |

  4. A(2, 0) and B(4, 0) are two given points. A point P moves so that P A...

    Text Solution

    |

  5. Let A(3, 2) and B(6, 5) be two points and a point C (x,y) is chosen on...

    Text Solution

    |

  6. Let f and g be two real values functions defined by f ( x ) = x + 1 ...

    Text Solution

    |

  7. The number of injections possible from A= {1,3,5,6} to B= {2,8,11}...

    Text Solution

    |

  8. Let f:R→R:f(x)=x ^2+1. find f^(−1) {10}

    Text Solution

    |

  9. If f:C→C is defined by f(x)=x^4 then find f^(-1){1}.

    Text Solution

    |

  10. Prove that the function f defined by f(x)=x^2−x+1 is neither increasin...

    Text Solution

    |

  11. If sinΘ+cosec Θ=2 find the value of cotΘ+cosΘ

    Text Solution

    |

  12. If 2sin^(-1)((9-4x^(2))/(9+4x^(2)))+3cos^(-1)((12x)/(9+4x^(2)))+tan^(-...

    Text Solution

    |

  13. The value of cos1^o.cos2 ^o.cos3^o.....cos179^o is equal to

    Text Solution

    |

  14. If A=15 deg, verify that 4sin2A.cos4A.sin6A=1

    Text Solution

    |

  15. If cos(α+β)=0 , then sin(α−β), can be reduced to

    Text Solution

    |

  16. A(x(1),y(1)) and B(x(2),y(2)) are any two distinct points on the parab...

    Text Solution

    |

  17. If f:R rarr R is continous function satisying f(0) =1 and f(2x) -f(x)...

    Text Solution

    |

  18. Consider the parabola y^(2)=8x, if the normal at a point P on the par...

    Text Solution

    |

  19. If sinθ1+sinθ 2 +sinθ 3=3, then cosθ 1+cosθ 2+cosθ3 is equal to

    Text Solution

    |

  20. The equations of the transverse and conjugate axes of a hyperbola are...

    Text Solution

    |