Home
Class 12
MATHS
If f' ((x)/(y)). f((y)/(x))=(x^(2)+y^(2)...

If `f' ((x)/(y)). f((y)/(x))=(x^(2)+y^(2))/(xy) AA x,y in R^(+) and f(1)=1`, then `f^(2) (x)` is

A

`x+In x`

B

`x^(2)+2Inx`

C

`x^(2)+In x`

D

`x+2In x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f^2(x) \) given the equation: \[ f' \left( \frac{x}{y} \right) f \left( \frac{y}{x} \right) = \frac{x^2 + y^2}{xy} \] with the condition \( f(1) = 1 \). ### Step 1: Interchange \( x \) and \( y \) We start by interchanging \( x \) and \( y \) in the original equation: \[ f' \left( \frac{y}{x} \right) f \left( \frac{x}{y} \right) = \frac{y^2 + x^2}{yx} \] Since \( x^2 + y^2 = y^2 + x^2 \), we can equate both equations: \[ f' \left( \frac{x}{y} \right) f \left( \frac{y}{x} \right) = f' \left( \frac{y}{x} \right) f \left( \frac{x}{y} \right) \] ### Step 2: Rearranging the Equation From the above equality, we can rearrange it to: \[ f' \left( \frac{y}{x} \right) \frac{1}{f \left( \frac{y}{x} \right)} = \frac{1}{f \left( \frac{x}{y} \right)} f' \left( \frac{x}{y} \right) \] ### Step 3: Integrate Both Sides Now we can integrate both sides. Since the left side can be expressed in the form \( \frac{1}{f(u)} f'(u) \), we integrate: \[ \int \frac{1}{f(u)} f'(u) \, du = \ln |f(u)| + C \] This gives us: \[ \ln \left( f \left( \frac{y}{x} \right) \right) = \ln \left( f \left( \frac{x}{y} \right) \right) + C \] ### Step 4: Using the Condition \( f(1) = 1 \) Now, we set \( y = x \): \[ f(1) = f(1) + C \implies C = 0 \] Thus, we have: \[ f \left( \frac{y}{x} \right) = f \left( \frac{x}{y} \right) \] ### Step 5: Set \( y = 1 \) Next, we set \( y = 1 \) in the original equation: \[ f' (x) f(1/x) = x^2 + 1/x \] Using the fact that \( f(1) = 1 \): \[ f' (x) f(1/x) = x + 1/x \] ### Step 6: Substitute \( f(1/x) \) From our earlier result \( f(1/x) = f(x) \): \[ f' (x) f(x) = x + 1/x \] ### Step 7: Rewrite and Integrate This can be rewritten as: \[ f(x) f'(x) = x + \frac{1}{x} \] Now, we can integrate both sides: \[ \int f(x) \, df = \int \left( x + \frac{1}{x} \right) \, dx \] This gives: \[ \frac{f^2(x)}{2} = \frac{x^2}{2} + \ln |x| + C \] ### Step 8: Solve for \( C \) Using \( f(1) = 1 \): \[ \frac{1^2}{2} = \frac{1^2}{2} + \ln(1) + C \implies C = 0 \] ### Step 9: Final Expression for \( f^2(x) \) Thus, we have: \[ \frac{f^2(x)}{2} = \frac{x^2}{2} + \ln |x| \] Multiplying through by 2 gives: \[ f^2(x) = x^2 + 2 \ln |x| \] ### Final Answer Thus, the required expression for \( f^2(x) \) is: \[ \boxed{x^2 + 2 \ln x} \]

To solve the problem, we need to find \( f^2(x) \) given the equation: \[ f' \left( \frac{x}{y} \right) f \left( \frac{y}{x} \right) = \frac{x^2 + y^2}{xy} \] with the condition \( f(1) = 1 \). ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k , then

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

If f(x) is a function satisfying f(x)-f(y)=(y^y)/(x^x)f((x^x)/(y^y))AAx , y in R^*"and"f^(prime)(1)=1 , then find f(x)

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

If a function satisfies (x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2 , then

Let y=f(x) be a solution of the differential equation (dy)/(dx)=(y^(2)-x^(2))/(2xy)(AA x, y gt 0) . If f(1)=2 , then f'(1) is equal to

Let f be a real valued function satisfying 2f(xy) = {f(x)}^(y) + {f(y)}^(x), AA x, y in R and f(1) = 2, then find underset(K = 1)overset(2008)sum f(K)

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f((xy)/(2)) = (f(x).f(y))/(2), x, y in R, f(1) = f'(1)."Then", (f(3))/(f'(3)) is.........

ALLEN-TEST PAPERS-part-2 Mathematics
  1. Find the least value of k such that the equation (ln x) + k = e^(x-k) ...

    Text Solution

    |

  2. Volume of tetrahedron formed by the planes x+y=0, y+z=0, z+x=0,x+y+z-1...

    Text Solution

    |

  3. If f' ((x)/(y)). f((y)/(x))=(x^(2)+y^(2))/(xy) AA x,y in R^(+) and f(1...

    Text Solution

    |

  4. Range of the function f defined by (x) =[(1)/(sin{x})] (where [.] an...

    Text Solution

    |

  5. The vlaue of sqrt3cot20^(@)-4cos20^(@), is

    Text Solution

    |

  6. Which of the following function is surjective but not injective. (a) ...

    Text Solution

    |

  7. f:RrarrR is a function satisfying f(x+5)gef(x)+5 and f(x+1)lef(x)+1. ...

    Text Solution

    |

  8. If f(x)=((1-tanx)/(1+sinx))^(cosec x) is to be made continuous at x=0,...

    Text Solution

    |

  9. If a(1) is the greatest value of f(x) , where f(x) =((1)/(2+[sinx])) (...

    Text Solution

    |

  10. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  11. Let f:N rarr N be a function that (i) x-f(x)=19[x/19]-90[f(x)/90], f...

    Text Solution

    |

  12. The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/...

    Text Solution

    |

  13. Let f:[-pi/3,(2pi)/3] rarr [0,4] be a function defined as f(x)=sqrt(3)...

    Text Solution

    |

  14. If vec(alpha), vec(beta),vec(gamma) are three non-collinear unit vecto...

    Text Solution

    |

  15. If the angle between the vectors a=hat(i)+cosxhat(j)+hat(k) and b=(sin...

    Text Solution

    |

  16. Find the slope of a common tangent to the ellipse (x^2)/(a^2)+(y^2)/(b...

    Text Solution

    |

  17. If a tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 makes eq...

    Text Solution

    |

  18. Find the vertices of the hyperbola 9x^2=16 y^2-36 x+96 y-252=0

    Text Solution

    |

  19. If P N is the perpendicular from a point on a rectangular hyperbola x ...

    Text Solution

    |

  20. Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

    Text Solution

    |