Home
Class 12
MATHS
If f(x)=((1-tanx)/(1+sinx))^(cosec x) is...

If `f(x)=((1-tanx)/(1+sinx))^(cosec x)` is to be made continuous at `x=0,` then `f(0)` must be equal to

A

`e^(2)`

B

`e`

C

`(I)/(e)`

D

`(I)/(e^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( f(0) \) for the function \( f(x) = \left( \frac{1 - \tan x}{1 + \sin x} \right)^{\csc x} \) to be continuous at \( x = 0 \), we need to ensure that \( f(0) \) equals the limit of \( f(x) \) as \( x \) approaches 0. ### Step 1: Evaluate \( f(0) \) First, we need to find \( f(0) \): \[ f(0) = \left( \frac{1 - \tan(0)}{1 + \sin(0)} \right)^{\csc(0)} \] Since \( \tan(0) = 0 \) and \( \sin(0) = 0 \), we have: \[ f(0) = \left( \frac{1 - 0}{1 + 0} \right)^{\csc(0)} = 1^{\csc(0)} \] However, \( \csc(0) \) is undefined because \( \csc x = \frac{1}{\sin x} \) and \( \sin(0) = 0 \). Thus, \( f(0) \) is not directly computable. ### Step 2: Find the limit of \( f(x) \) as \( x \to 0 \) Next, we need to compute the limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \left( \frac{1 - \tan x}{1 + \sin x} \right)^{\csc x} \] This is an indeterminate form of type \( 1^\infty \). To resolve this, we can use the logarithmic limit approach. ### Step 3: Take the natural logarithm Let: \[ L = \lim_{x \to 0} f(x) = \lim_{x \to 0} \left( \frac{1 - \tan x}{1 + \sin x} \right)^{\csc x} \] Taking the natural logarithm: \[ \ln L = \lim_{x \to 0} \csc x \cdot \ln \left( \frac{1 - \tan x}{1 + \sin x} \right) \] ### Step 4: Simplify the logarithmic expression Using the small angle approximations \( \tan x \approx x \) and \( \sin x \approx x \) as \( x \to 0 \): \[ \frac{1 - \tan x}{1 + \sin x} \approx \frac{1 - x}{1 + x} = \frac{1 - x}{1 + x} \] Now, we can compute: \[ \ln \left( \frac{1 - x}{1 + x} \right) = \ln(1 - x) - \ln(1 + x) \] Using Taylor expansion: \[ \ln(1 - x) \approx -x \quad \text{and} \quad \ln(1 + x) \approx x \] Thus: \[ \ln \left( \frac{1 - \tan x}{1 + \sin x} \right) \approx -x - x = -2x \] ### Step 5: Substitute back into the limit Now substituting back into the limit: \[ \ln L = \lim_{x \to 0} \csc x \cdot (-2x) = \lim_{x \to 0} -2 \cdot \frac{x}{\sin x} \] As \( x \to 0 \), \( \frac{x}{\sin x} \to 1 \): \[ \ln L = -2 \] Thus: \[ L = e^{-2} = \frac{1}{e^2} \] ### Conclusion: Value of \( f(0) \) For \( f(x) \) to be continuous at \( x = 0 \), we must have: \[ f(0) = \lim_{x \to 0} f(x) = \frac{1}{e^2} \] ### Final Answer Therefore, \( f(0) \) must be equal to \( \frac{1}{e^2} \). ---

To determine the value of \( f(0) \) for the function \( f(x) = \left( \frac{1 - \tan x}{1 + \sin x} \right)^{\csc x} \) to be continuous at \( x = 0 \), we need to ensure that \( f(0) \) equals the limit of \( f(x) \) as \( x \) approaches 0. ### Step 1: Evaluate \( f(0) \) First, we need to find \( f(0) \): \[ f(0) = \left( \frac{1 - \tan(0)}{1 + \sin(0)} \right)^{\csc(0)} \] Since \( \tan(0) = 0 \) and \( \sin(0) = 0 \), we have: ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If f(x)=(x+1)^(cotx) be continuous at x=0, the f(0) is equal to

The value of f(0) such that f(x)=((1+tanx)/(1+sinx))^(cosecx) can be made continuous at x=0 is

If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous at x =0 then f(0)=

If function f(x) = (sqrt(1+x) - root(3)(1+x))/(x) is continuous function at x = 0, then f(0) is equal to

If f(x)={((1-coskx)/(xsinx) ,, x!=0),(1/2 ,, x=0):} is continuous at x=0, find k

If f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2)) for x!=0 is continuous at x=0 , then A+B+f(0) is

If the function f(x) =(tan(tanx)-sin(sinx))/(tanx-sinx) (x !=0) : is continuous at x=0 ,then find the value of f (0)

If f(x)=(2x+3sinx)/(3x+2sinx),x!=0 is continuous at x=0 , then find f(0)dot

If f(x)={{:((1-cospx)/(xsinx)",",x ne0),((1)/(2)",",x=0):} is continuous at x=0 then p is equal to

If f(x)=(2x+3sinx)/(3x+2sinx) , x!=0 is continuous at x=0 , then find f(0)

ALLEN-TEST PAPERS-part-2 Mathematics
  1. If f' ((x)/(y)). f((y)/(x))=(x^(2)+y^(2))/(xy) AA x,y in R^(+) and f(1...

    Text Solution

    |

  2. Range of the function f defined by (x) =[(1)/(sin{x})] (where [.] an...

    Text Solution

    |

  3. The vlaue of sqrt3cot20^(@)-4cos20^(@), is

    Text Solution

    |

  4. Which of the following function is surjective but not injective. (a) ...

    Text Solution

    |

  5. f:RrarrR is a function satisfying f(x+5)gef(x)+5 and f(x+1)lef(x)+1. ...

    Text Solution

    |

  6. If f(x)=((1-tanx)/(1+sinx))^(cosec x) is to be made continuous at x=0,...

    Text Solution

    |

  7. If a(1) is the greatest value of f(x) , where f(x) =((1)/(2+[sinx])) (...

    Text Solution

    |

  8. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  9. Let f:N rarr N be a function that (i) x-f(x)=19[x/19]-90[f(x)/90], f...

    Text Solution

    |

  10. The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/...

    Text Solution

    |

  11. Let f:[-pi/3,(2pi)/3] rarr [0,4] be a function defined as f(x)=sqrt(3)...

    Text Solution

    |

  12. If vec(alpha), vec(beta),vec(gamma) are three non-collinear unit vecto...

    Text Solution

    |

  13. If the angle between the vectors a=hat(i)+cosxhat(j)+hat(k) and b=(sin...

    Text Solution

    |

  14. Find the slope of a common tangent to the ellipse (x^2)/(a^2)+(y^2)/(b...

    Text Solution

    |

  15. If a tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 makes eq...

    Text Solution

    |

  16. Find the vertices of the hyperbola 9x^2=16 y^2-36 x+96 y-252=0

    Text Solution

    |

  17. If P N is the perpendicular from a point on a rectangular hyperbola x ...

    Text Solution

    |

  18. Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

    Text Solution

    |

  19. If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n x^2+y^2+z^2+2x y z=1 2...

    Text Solution

    |

  20. The complete solution set of the inequality (cos^(-1)x)^(2)-(sin^(-1)...

    Text Solution

    |