Home
Class 12
MATHS
If a(1) is the greatest value of f(x) , ...

If `a_(1)` is the greatest value of `f(x)` , where `f(x) =((1)/(2+[sinx]))` (where [.] denotes greatest integer function) and `a_(n-1)=((-1)^(n-2))/((n+1))+a_(n)` (where n in N), then `lim_(nrarroo) (a_(n))` is

A

`1`

B

`e^(2)`

C

`In^(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given function and the recursive relation step by step. ### Step 1: Analyze the function \( f(x) = \frac{1}{2 + \lfloor \sin x \rfloor} \) The greatest integer function \( \lfloor \sin x \rfloor \) takes the values based on the output of \( \sin x \). The sine function oscillates between -1 and 1. Therefore, the possible values for \( \lfloor \sin x \rfloor \) are: - \( \lfloor \sin x \rfloor = -1 \) when \( \sin x \) is in the interval \([-1, 0)\) - \( \lfloor \sin x \rfloor = 0 \) when \( \sin x = 0\) - \( \lfloor \sin x \rfloor = 1 \) when \( \sin x \) is in the interval \([0, 1]\) ### Step 2: Determine the possible values of \( f(x) \) Now, substituting these values into \( f(x) \): 1. When \( \lfloor \sin x \rfloor = -1 \): \[ f(x) = \frac{1}{2 + (-1)} = \frac{1}{1} = 1 \] 2. When \( \lfloor \sin x \rfloor = 0 \): \[ f(x) = \frac{1}{2 + 0} = \frac{1}{2} \] 3. When \( \lfloor \sin x \rfloor = 1 \): \[ f(x) = \frac{1}{2 + 1} = \frac{1}{3} \] ### Step 3: Identify the greatest value of \( f(x) \) From the calculations above, the maximum value of \( f(x) \) is: \[ a_1 = 1 \] ### Step 4: Analyze the recursive relation \( a_{n-1} = \frac{(-1)^{n-2}}{(n+1)} + a_n \) We need to find the limit of \( a_n \) as \( n \) approaches infinity. ### Step 5: Rearranging the recursive relation Rearranging the recursive relation gives: \[ a_n = a_{n-1} - \frac{(-1)^{n-2}}{(n+1)} \] ### Step 6: Calculate the limit as \( n \to \infty \) As \( n \) approaches infinity, the term \( \frac{(-1)^{n-2}}{(n+1)} \) approaches 0. Therefore, the sequence \( a_n \) oscillates around a certain value. To find the limit, we can observe that: - For even \( n \), \( a_n \) will be slightly less than \( a_{n-1} \) - For odd \( n \), \( a_n \) will be slightly more than \( a_{n-1} \) Thus, the sequence converges to a limit \( L \) such that: \[ L = L - 0 \] This implies that the limit \( L \) is stable, and since the oscillation diminishes, we conclude: \[ \lim_{n \to \infty} a_n = 1 \] ### Final Answer: \[ \lim_{n \to \infty} a_n = 1 \]

To solve the problem, we need to analyze the given function and the recursive relation step by step. ### Step 1: Analyze the function \( f(x) = \frac{1}{2 + \lfloor \sin x \rfloor} \) The greatest integer function \( \lfloor \sin x \rfloor \) takes the values based on the output of \( \sin x \). The sine function oscillates between -1 and 1. Therefore, the possible values for \( \lfloor \sin x \rfloor \) are: - \( \lfloor \sin x \rfloor = -1 \) when \( \sin x \) is in the interval \([-1, 0)\) - \( \lfloor \sin x \rfloor = 0 \) when \( \sin x = 0\) - \( \lfloor \sin x \rfloor = 1 \) when \( \sin x \) is in the interval \([0, 1]\) ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

The value of lim(n->oo)((1.5)^n + [(1 + 0.0001)^(10000)]^n)^(1/n) , where [.] denotes the greatest integer function is:

Let a sequence whose n^(th) term is {a_(n)} be defined as a_(1) = 1/2 and (n-1)a_(n-1) = (n+1)a_(n) for n ge 2 then Lim_(n rarroo) S_(n) equals

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2))^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

The value o lim_(xtooo)(1/(n^(3)))([1^(2)x+1^(2)]+[2^(2)x+2^(2)]+…..+[n^(2)x+n^(2)]) is where [.] denotes the greatest integer function.

For a sequence {a_(n)}, a_(1) = 2 and (a_(n+1))/(a_(n)) = 1/3 , Then sum_(r=1)^(oo) a_(r) is

If f:NtoR, where f(n)=a_(n)=(n)/((2n+1)^(2)) write the sequence in ordered pair from.

If a_(1)=1,a_(n+1)=(1)/(n+1)a_(n),a ge1 , then prove by induction that a_(n+1)=(1)/((n+1)!)n in N .

If A_(1), A_(2),..,A_(n) are any n events, then

ALLEN-TEST PAPERS-part-2 Mathematics
  1. If f' ((x)/(y)). f((y)/(x))=(x^(2)+y^(2))/(xy) AA x,y in R^(+) and f(1...

    Text Solution

    |

  2. Range of the function f defined by (x) =[(1)/(sin{x})] (where [.] an...

    Text Solution

    |

  3. The vlaue of sqrt3cot20^(@)-4cos20^(@), is

    Text Solution

    |

  4. Which of the following function is surjective but not injective. (a) ...

    Text Solution

    |

  5. f:RrarrR is a function satisfying f(x+5)gef(x)+5 and f(x+1)lef(x)+1. ...

    Text Solution

    |

  6. If f(x)=((1-tanx)/(1+sinx))^(cosec x) is to be made continuous at x=0,...

    Text Solution

    |

  7. If a(1) is the greatest value of f(x) , where f(x) =((1)/(2+[sinx])) (...

    Text Solution

    |

  8. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  9. Let f:N rarr N be a function that (i) x-f(x)=19[x/19]-90[f(x)/90], f...

    Text Solution

    |

  10. The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/...

    Text Solution

    |

  11. Let f:[-pi/3,(2pi)/3] rarr [0,4] be a function defined as f(x)=sqrt(3)...

    Text Solution

    |

  12. If vec(alpha), vec(beta),vec(gamma) are three non-collinear unit vecto...

    Text Solution

    |

  13. If the angle between the vectors a=hat(i)+cosxhat(j)+hat(k) and b=(sin...

    Text Solution

    |

  14. Find the slope of a common tangent to the ellipse (x^2)/(a^2)+(y^2)/(b...

    Text Solution

    |

  15. If a tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 makes eq...

    Text Solution

    |

  16. Find the vertices of the hyperbola 9x^2=16 y^2-36 x+96 y-252=0

    Text Solution

    |

  17. If P N is the perpendicular from a point on a rectangular hyperbola x ...

    Text Solution

    |

  18. Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

    Text Solution

    |

  19. If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n x^2+y^2+z^2+2x y z=1 2...

    Text Solution

    |

  20. The complete solution set of the inequality (cos^(-1)x)^(2)-(sin^(-1)...

    Text Solution

    |