Home
Class 11
PHYSICS
The values of sintheta(1), cos^(2)theta(...

The values of `sintheta_(1), cos^(2)theta_(2)` and `tan theta_(3)` are given as `.^(1)//_(2), -.^(1)//_(2)` and `3` (not in order), for some angles `theta_(1), theta_(2)` and `theta_(3)`. Choose incorrect statement.A

A

The value of `tan theta_(3)` could be `-0.5`

B

The value of `sintheta_(1)` can not be `3`.

C

The value of `cos^(2)theta_(2)` can't be `-0.5`

D

The value of `cos^(2)theta_(2)` could be `3`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given values of \( \sin \theta_1 \), \( \cos^2 \theta_2 \), and \( \tan \theta_3 \), which are \( \frac{1}{2} \), \( -\frac{1}{2} \), and \( 3 \) (not in order). We are to choose the incorrect statement about these values. ### Step-by-Step Solution: 1. **Identify the Possible Values**: - We have three values: \( \frac{1}{2} \), \( -\frac{1}{2} \), and \( 3 \). - These values correspond to \( \sin \theta_1 \), \( \cos^2 \theta_2 \), and \( \tan \theta_3 \). 2. **Determine Valid Ranges**: - The sine function, \( \sin \theta \), can take values from \( -1 \) to \( 1 \). Therefore, \( \sin \theta_1 \) can be \( \frac{1}{2} \) or \( -\frac{1}{2} \). - The cosine squared function, \( \cos^2 \theta \), must be non-negative and can take values from \( 0 \) to \( 1 \). Thus, \( \cos^2 \theta_2 \) cannot be \( -\frac{1}{2} \) or \( 3 \). - The tangent function, \( \tan \theta \), can take any real number value, so \( \tan \theta_3 \) can be \( 3 \). 3. **Assign Values**: - Since \( \cos^2 \theta_2 \) cannot be negative, we assign: - \( \cos^2 \theta_2 = \frac{1}{2} \) - This means \( \sin \theta_1 = -\frac{1}{2} \) (since it can be either \( \frac{1}{2} \) or \( -\frac{1}{2} \)). - Consequently, \( \tan \theta_3 = 3 \). 4. **Evaluate Statements**: - Now we evaluate the statements based on the assigned values: - **Statement A**: \( \tan \theta_3 \) could be \( -\frac{1}{2} \) (Incorrect, since \( \tan \theta_3 = 3 \)). - **Statement B**: \( \sin \theta_1 \) cannot be \( 3 \) (Correct, since \( \sin \theta_1 = -\frac{1}{2} \)). - **Statement C**: \( \cos^2 \theta_2 \) cannot be \( -\frac{1}{2} \) (Correct, since \( \cos^2 \theta_2 = \frac{1}{2} \)). - **Statement D**: \( \cos^2 \theta_2 \) could be \( 3 \) (Incorrect, since \( \cos^2 \theta_2 = \frac{1}{2} \)). 5. **Conclusion**: - The incorrect statements are A and D. However, since we need to choose one incorrect statement, we can select either A or D based on the context of the question. ### Final Answer: The incorrect statement is **A**: \( \tan \theta_3 \) could be \( -\frac{1}{2} \).

To solve the problem, we need to analyze the given values of \( \sin \theta_1 \), \( \cos^2 \theta_2 \), and \( \tan \theta_3 \), which are \( \frac{1}{2} \), \( -\frac{1}{2} \), and \( 3 \) (not in order). We are to choose the incorrect statement about these values. ### Step-by-Step Solution: 1. **Identify the Possible Values**: - We have three values: \( \frac{1}{2} \), \( -\frac{1}{2} \), and \( 3 \). - These values correspond to \( \sin \theta_1 \), \( \cos^2 \theta_2 \), and \( \tan \theta_3 \). ...
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3 , then cos theta_(1)+cos theta_(2)+cos theta_(3)=

Prove that (1 - cos 2 theta)/( sin 2 theta) = tan theta.

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3)=

theta_(1),theta_(2),theta_(3) are angles of 1^(st) quadrant if tan theta_(1) = cos theta_(1), tan theta_(2) = cosec theta_(2), cos theta_(3)=theta_(3) . Which of the following is not true ?

Prove that cos theta (tan theta +2) (2tan theta +1) = 2 sec theta + 5 sin theta

Let z_(1),z_(2) and z_(3) be three points on |z|=1 . If theta_(1), theta_(2) and theta_(3) be the arguments of z_(1),z_(2),z_(3) respectively, then cos(theta_(1)-theta_(2))+cos(theta_(2)-theta_(3))+cos(theta_(3)-theta_(1))

If sin theta = cos theta find the value of : 3 tan ^(2) theta+ 2 sin ^(2) theta -1

Prove that (1+sin 2theta)/(1-sin 2theta) = ((1+tan theta)/(1-tan theta))^2

If theta= tan^(-1) (2tan^2 theta) - tan^(-1) (1/3 tan theta) . Then tan theta is a) -2 b) -1 c) 2/3 d) 2

"cosec"^(2)theta(cos^(2)theta-3cos theta+2)ge1 , If theta belongs to