Home
Class 11
PHYSICS
Find the value of :...

Find the value of :

A

`sin 74^(@)`

B

`cos 106^(@)`

C

`sin 15^(@)`

D

`cos 75^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question, we need to find the values of the following trigonometric functions: 1. \( \sin 45^\circ \) 2. \( \sin 74^\circ \) 3. \( \sin 15^\circ \) 4. \( \cos 75^\circ \) Let's go through each step one by one. ### Step 1: Find \( \sin 45^\circ \) The value of \( \sin 45^\circ \) is a well-known trigonometric value: \[ \sin 45^\circ = \frac{1}{\sqrt{2}} \quad \text{or} \quad \frac{\sqrt{2}}{2} \] ### Step 2: Find \( \sin 74^\circ \) We can express \( \sin 74^\circ \) using the double angle formula: \[ \sin 74^\circ = \sin(2 \times 37^\circ) = 2 \sin 37^\circ \cos 37^\circ \] From trigonometric tables or calculations, we know: \[ \sin 37^\circ = \frac{3}{5}, \quad \cos 37^\circ = \frac{4}{5} \] Substituting these values: \[ \sin 74^\circ = 2 \times \frac{3}{5} \times \frac{4}{5} = \frac{24}{25} \] ### Step 3: Find \( \sin 15^\circ \) We can express \( \sin 15^\circ \) using the sine difference formula: \[ \sin 15^\circ = \sin(45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ \] Substituting known values: \[ \sin 45^\circ = \frac{1}{\sqrt{2}}, \quad \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \cos 45^\circ = \frac{1}{\sqrt{2}}, \quad \sin 30^\circ = \frac{1}{2} \] Thus, \[ \sin 15^\circ = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \] ### Step 4: Find \( \cos 75^\circ \) We can express \( \cos 75^\circ \) using the cosine addition formula: \[ \cos 75^\circ = \cos(45^\circ + 30^\circ) = \cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ \] Substituting known values: \[ \cos 75^\circ = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \] ### Summary of Values 1. \( \sin 45^\circ = \frac{1}{\sqrt{2}} \) 2. \( \sin 74^\circ = \frac{24}{25} \) 3. \( \sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}} \) 4. \( \cos 75^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}} \)

To solve the question, we need to find the values of the following trigonometric functions: 1. \( \sin 45^\circ \) 2. \( \sin 74^\circ \) 3. \( \sin 15^\circ \) 4. \( \cos 75^\circ \) Let's go through each step one by one. ...
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

Find the values of A,B and C

Find the values of x and y.

Find the values of sin75^(@) .

Find the values of A and B.

1.Find the values of - (i)

Find the values of - (i)

Find the values of x and y.

Find the values of the following trigonometric ratios :

Find the values of the following :- sin390^(@)""

1.Find the values of