Home
Class 11
PHYSICS
Three vector vec(A),vec(B), vec(C ) sati...

Three vector `vec(A)`,`vec(B)`, `vec(C )` satisfy the relation `vec(A)*vec(B)=0`and `vec(A).vec(C )=0`. The vector `vec(A)` is parallel to

A

`vec(B)`

B

`vec(C)`

C

`vec(B). vec(C)`

D

`vec(B)xxvec(C)`

Text Solution

Verified by Experts

The correct Answer is:
D

`vec(A).vec(B)=0rArr vec(A)bot vec(B)` & `vec(A).vec(C)=0rArrvec(A) bot vec(C)`
But `vec(B)xxvec(C)` is perpendicular to both `vec(B)` and `vec(C)` so `vec(A)` is parallel to `vec(B)xxvec(C)`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

Let vec(A), vec(B) and vec(C) , be unit vectors. Suppose that vec(A).vec(B)=vec(A).vec(C)=0 and the angle between vec(B) and vec(C) is pi/6 then

If vec(A), vec(B) and vec(C ) are three vectors, then the wrong relation is :

Three vectors vec a ,\ vec b ,\ vec c satisfy the condition vec a+ vec b+ vec c= vec0 . Evaluate the quantity mu= vec adot vec b+ vec bdot vec c+ vec cdot vec a ,\ if\ | vec a|=1,\ | vec b|=4\ a n d\ | vec c|=2.

If vec(a)vec(b)vec(c ) and vec(d) are vectors such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c ) = vec(b)xxvec(d) . Then show that the vectors vec(a) -vec(d) and vec(b) -vec(c ) are parallel.

For three non-zero vectors vec(a),\vec(b) " and"vec(c ) , prove that [(vec(a)-vec(b))\ \ (vec(b)-vec(c))\ \ (vec(c )-vec(a))]=0

If vec(A) vec(B), vec(C ) are three vectors and one of them has zero magnitude , then given that vec(A) xx vec(B) = 0 and vec(B) xx vec(C ) = 0 , Prove that vec(A) xx vec(c ) = 0

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If vec(A) , vec(B) and vec(C ) are three vectors when you can say that vec(A) + vec(B) = vec(C ) and A+B = C are the same ?

If the vectors vec(a) + vec(b), vec(b) + vec(c) and vec(c) + vec(a) are coplanar, then prove that the vectors vec(a), vec(b) and vec(c) are also coplanar.

Let vec(a), vec(b), vec(c) be vectors of length 3, 4, 5 respectively. Let vec(a) be perpendicular to vec(b)+vec(c), vec(b) to vec(c)+vec(a) and vec(c) to vec(a)+vec(b) . Then |vec(a)+vec(b)+vec(c)| is :