Home
Class 11
PHYSICS
Consider three vectors vec(A)=2 hat(i)...

Consider three vectors
`vec(A)=2 hat(i)+3 hat(j)-2 hat(k)" " vec(B)=5hat(i)+nhat(j)+hat(k)" " vec(C)=-hat(i)+2hat(j)+3 hat(k)`
If these three vectors are coplanar, then value of n will be

A

0

B

12

C

16

D

18

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( n \) for which the vectors \( \vec{A} \), \( \vec{B} \), and \( \vec{C} \) are coplanar, we can use the condition that the scalar triple product of the vectors must equal zero. The scalar triple product can be calculated using the determinant of a matrix formed by the components of the vectors. ### Step-by-Step Solution: 1. **Write down the vectors:** \[ \vec{A} = 2 \hat{i} + 3 \hat{j} - 2 \hat{k} \] \[ \vec{B} = 5 \hat{i} + n \hat{j} + \hat{k} \] \[ \vec{C} = -\hat{i} + 2 \hat{j} + 3 \hat{k} \] 2. **Set up the determinant for the scalar triple product:** The scalar triple product can be expressed as: \[ \vec{A} \cdot (\vec{B} \times \vec{C}) = \begin{vmatrix} 2 & 3 & -2 \\ 5 & n & 1 \\ -1 & 2 & 3 \end{vmatrix} \] 3. **Calculate the determinant:** We can expand this determinant using the first row: \[ = 2 \begin{vmatrix} n & 1 \\ 2 & 3 \end{vmatrix} - 3 \begin{vmatrix} 5 & 1 \\ -1 & 3 \end{vmatrix} - 2 \begin{vmatrix} 5 & n \\ -1 & 2 \end{vmatrix} \] Now calculating each of the 2x2 determinants: - First determinant: \[ \begin{vmatrix} n & 1 \\ 2 & 3 \end{vmatrix} = n \cdot 3 - 1 \cdot 2 = 3n - 2 \] - Second determinant: \[ \begin{vmatrix} 5 & 1 \\ -1 & 3 \end{vmatrix} = 5 \cdot 3 - 1 \cdot (-1) = 15 + 1 = 16 \] - Third determinant: \[ \begin{vmatrix} 5 & n \\ -1 & 2 \end{vmatrix} = 5 \cdot 2 - n \cdot (-1) = 10 + n \] 4. **Substituting back into the determinant:** \[ = 2(3n - 2) - 3(16) - 2(10 + n) \] \[ = 6n - 4 - 48 - 20 - 2n \] \[ = 6n - 2n - 4 - 48 - 20 \] \[ = 4n - 72 \] 5. **Set the determinant equal to zero for coplanarity:** \[ 4n - 72 = 0 \] 6. **Solve for \( n \):** \[ 4n = 72 \] \[ n = \frac{72}{4} = 18 \] ### Conclusion: The value of \( n \) for which the vectors \( \vec{A} \), \( \vec{B} \), and \( \vec{C} \) are coplanar is: \[ \boxed{18} \]

To determine the value of \( n \) for which the vectors \( \vec{A} \), \( \vec{B} \), and \( \vec{C} \) are coplanar, we can use the condition that the scalar triple product of the vectors must equal zero. The scalar triple product can be calculated using the determinant of a matrix formed by the components of the vectors. ### Step-by-Step Solution: 1. **Write down the vectors:** \[ \vec{A} = 2 \hat{i} + 3 \hat{j} - 2 \hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

Find a vector perpendicular to vector vec(A)=(hat(i)+2hat(j)-3hat(k)) as well as vec(B)=(hat(i)+hat(j)-hat(k))

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(a) = hat(i) + hat(j) + 2 hat(k) , vec(b) = 2 hat(j) + hat(k) and vec (c) = hat(i) + hat(j) + hat(k) . Find a unit vector perpendicular to the plane containing vec(a), vec(b), vec(c)

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is