Home
Class 11
PHYSICS
A particle of mass m is in a uni-directi...

A particle of mass m is in a uni-directional potential field where the potential energy of a particle depends on the x-coordinate given by `phi_(x)=phi_(0) (1- cos ax)` & `'phi_(0)'` and 'a' are constants. Find the physical dimensions of 'a' & `phi_(0)`.

Text Solution

Verified by Experts

The correct Answer is:
`L^(-1), ML^(2)T^(-2)`

Dimensions of `ax=M^(@)L^(@)T^(@)`
`rArr [a]=(M^(@)L^(@)T^(@))/([L])=L^(-1)` and `[phi_(0)]=[M^(1)L^(2)T^(-2)]`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise Exersice-4[B]|14 Videos
  • MISCELLANEOUS

    ALLEN|Exercise EXERCISE-5(A)|15 Videos
  • MISCELLANEOUS

    ALLEN|Exercise DATA SUFFICIENCY QUESTIONS|3 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

A partical of mass m is located in a unidimensionnal potential field where potentical energy of the partical depends on the coordinates x as: U (x) = U_(0) (1 - cos Ax), U_(0) and A constants. Find the period of small oscillation that the partical performs about the equilibrium position.

A particle of mass m is present in a region where the potential energy of the particle depends on the x-coordinate according to the expression U=(a)/(x^2)-(b)/(x) , where a and b are positive constant. The particle will perform.

A particle of mass m in a unidirectional potential field have potential energy U(x)=alpha+2betax^(2) , where alpha and beta are positive constants. Find its time period of oscillations.

The potential energy of a particle in motion along X axis is given by U = U_0 - u_0 cos ax. The time period of small oscillation is

A particle of mass m is moving in a potential well, for which the potential energy is given by U(x) = U_(0)(1-cosax) where U_(0) and a are positive constants. Then (for the small value of x)

The potential energy of a particle of mass 'm' situated in a unidimensional potential field varies as U(x) = U_0 [1- cos((ax)/2)] , where U_0 and a are positive constant. The time period of small oscillations of the particle about the mean position-

The potential energy of a particle is given by formula U=100-5x + 100x^(2), where U and 'x' are in SI unit .if mass of particle is 0.1 Kg then find the magnitude of its acceleration

A particle of mass m moves in a one dimensional potential energy U(x)=-ax^2+bx^4 , where a and b are positive constant. The angular frequency of small oscillation about the minima of the potential energy is equal to

A particle of mass m is executing osciallations about the origin on the x-axis with amplitude A. its potential energy is given as U(x)=alphax^(4) , where alpha is a positive constant. The x-coordinate of mass where potential energy is one-third the kinetic energy of particle is

A particle executes linear SHM with amplitude A and mean position is x=0. Determine position of the particle where potential energy of the particle is equal to its kinetic energy.

ALLEN-MISCELLANEOUS-Exercise-04 [A]
  1. A ardius vector of point A relative to the origin varies with time t a...

    Text Solution

    |

  2. Answer the following : (i) A vector has magnitude & direction. Does ...

    Text Solution

    |

  3. A room has dimensions 3 m xx 4 m xx5 m. A fly starting at one cronet e...

    Text Solution

    |

  4. Vector vec(a) has components a(x) = 3, a(y) = 4. The components of a v...

    Text Solution

    |

  5. Find: (i) "north cross west" " " (ii) "down dot south" (iii) "we...

    Text Solution

    |

  6. The position vector of a particle of mass m= 6kg is given as vec(r)=[(...

    Text Solution

    |

  7. A plane body has perpendicular axes OX and OY marked on it and is acte...

    Text Solution

    |

  8. State with reasons, whether the following algebraic operations with sc...

    Text Solution

    |

  9. A car travels due east on a level road for 30 km. It then turns due no...

    Text Solution

    |

  10. Write the vector representation of the vectors A and B with respect to...

    Text Solution

    |

  11. Find the kinetic energy of a particle of mass 200 g moving with veloci...

    Text Solution

    |

  12. Acceleration of particle moving in straight line can be written as a=(...

    Text Solution

    |

  13. The position vector of an object moving in X-Z plane is vec(r)=v(0)tha...

    Text Solution

    |

  14. The position x of a particle at time t is given by x = (V(0))/(a) (1 -...

    Text Solution

    |

  15. The related equations are : Q=mc(T(2)-T(1)), l(1)=l(0)[1+alpha(T(2)-T(...

    Text Solution

    |

  16. A particle of mass m is in a uni-directional potential field where the...

    Text Solution

    |

  17. Assume that the largest stone of mass 'm' that can be moved by a flowi...

    Text Solution

    |

  18. A projectile fired at an angle of 45^(@) travels a total distance R, c...

    Text Solution

    |

  19. In the formula , p = (nRT)/(V-b) e ^(a/(RTV)) find the dimensions of ...

    Text Solution

    |

  20. If instead of mass, length and time as fundamental quantities we choos...

    Text Solution

    |