Home
Class 12
PHYSICS
A bird starts from (1,0,0) in the direct...

A bird starts from `(1,0,0)` in the direction `(2hati+3hatj-6hatk)` with a speed `21 m//s` for `5` sec,then along the direction `(3hati+4hatj+5hatk)`with a speed `5sqrt2m//s` for `5` sec. Find the final displacement of the bird so that it reaches the origin?

A

`30hati+45hatj-45hatk`

B

`-45hati-65hatj+65hatk`

C

`-46hati-65hatj+65hatk`

D

`46hati-65hatj-65hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to calculate the displacement of the bird during its flight and then find the final displacement required to reach the origin. ### Step 1: Calculate the displacement during the first segment of the flight. The bird starts from the point \( (1, 0, 0) \) and flies in the direction of \( (2\hat{i} + 3\hat{j} - 6\hat{k}) \) with a speed of \( 21 \, \text{m/s} \) for \( 5 \, \text{s} \). 1. **Calculate the unit vector in the direction of the first segment:** \[ \text{Magnitude} = \sqrt{2^2 + 3^2 + (-6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \] \[ \text{Unit vector} = \frac{(2\hat{i} + 3\hat{j} - 6\hat{k})}{7} = \frac{2}{7}\hat{i} + \frac{3}{7}\hat{j} - \frac{6}{7}\hat{k} \] 2. **Calculate the displacement vector \( S_1 \):** \[ S_1 = \text{Speed} \times \text{Time} \times \text{Unit vector} = 21 \, \text{m/s} \times 5 \, \text{s} \times \left(\frac{2}{7}\hat{i} + \frac{3}{7}\hat{j} - \frac{6}{7}\hat{k}\right) \] \[ S_1 = 105 \left(\frac{2}{7}\hat{i} + \frac{3}{7}\hat{j} - \frac{6}{7}\hat{k}\right) = 30\hat{i} + 45\hat{j} - 90\hat{k} \] ### Step 2: Calculate the displacement during the second segment of the flight. The bird then flies in the direction of \( (3\hat{i} + 4\hat{j} + 5\hat{k}) \) with a speed of \( 5\sqrt{2} \, \text{m/s} \) for \( 5 \, \text{s} \). 1. **Calculate the unit vector in the direction of the second segment:** \[ \text{Magnitude} = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{9 + 16 + 25} = \sqrt{50} = 5\sqrt{2} \] \[ \text{Unit vector} = \frac{(3\hat{i} + 4\hat{j} + 5\hat{k})}{5\sqrt{2}} = \frac{3}{5\sqrt{2}}\hat{i} + \frac{4}{5\sqrt{2}}\hat{j} + \frac{5}{5\sqrt{2}}\hat{k} \] 2. **Calculate the displacement vector \( S_2 \):** \[ S_2 = \text{Speed} \times \text{Time} \times \text{Unit vector} = 5\sqrt{2} \, \text{m/s} \times 5 \, \text{s} \times \left(\frac{3}{5\sqrt{2}}\hat{i} + \frac{4}{5\sqrt{2}}\hat{j} + \frac{5}{5\sqrt{2}}\hat{k}\right) \] \[ S_2 = 25 \left(\frac{3}{5\sqrt{2}}\hat{i} + \frac{4}{5\sqrt{2}}\hat{j} + \frac{5}{5\sqrt{2}}\hat{k}\right) = 15\hat{i} + 20\hat{j} + 25\hat{k} \] ### Step 3: Calculate the total displacement from the initial position. The total displacement \( S \) from the initial position \( (1, 0, 0) \) is given by: \[ S = S_1 + S_2 = (30\hat{i} + 45\hat{j} - 90\hat{k}) + (15\hat{i} + 20\hat{j} + 25\hat{k}) \] \[ S = (30 + 15)\hat{i} + (45 + 20)\hat{j} + (-90 + 25)\hat{k} = 45\hat{i} + 65\hat{j} - 65\hat{k} \] ### Step 4: Find the final displacement required to reach the origin. To find the final displacement \( S_3 \) required to reach the origin, we set up the equation: \[ \text{Final Position} = \text{Initial Position} + S + S_3 = (1, 0, 0) + (45\hat{i} + 65\hat{j} - 65\hat{k}) + S_3 = (0, 0, 0) \] This leads to: \[ S_3 = - (1 + 45)\hat{i} - 65\hat{j} + 65\hat{k} = -46\hat{i} - 65\hat{j} + 65\hat{k} \] ### Final Answer: The final displacement of the bird so that it reaches the origin is: \[ S_3 = -46\hat{i} - 65\hat{j} + 65\hat{k} \]

To solve the problem step by step, we need to calculate the displacement of the bird during its flight and then find the final displacement required to reach the origin. ### Step 1: Calculate the displacement during the first segment of the flight. The bird starts from the point \( (1, 0, 0) \) and flies in the direction of \( (2\hat{i} + 3\hat{j} - 6\hat{k}) \) with a speed of \( 21 \, \text{m/s} \) for \( 5 \, \text{s} \). 1. **Calculate the unit vector in the direction of the first segment:** \[ \text{Magnitude} = \sqrt{2^2 + 3^2 + (-6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 ...
Promotional Banner

Topper's Solved these Questions