Home
Class 12
CHEMISTRY
CH(3)COCH(3(g))hArrC(2)H(6) (g)+CO((g)) ...

`CH_(3)COCH_(3(g))hArrC_(2)H_(6) (g)+CO_((g))` , The initial pressure of `CH_(3)COCH_(3)` is `50 mm`. At equilibrium the mole fraction of `C_(2)H_(6)` is 1/5 then `K_(p)` will be `:-`

A

`3.333` mm

B

`4.166` mm

C

`8.333` mm

D

`16.666` mm

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the equilibrium constant \( K_p \) for the reaction: \[ \text{CH}_3\text{COCH}_3(g) \rightleftharpoons \text{C}_2\text{H}_6(g) + \text{CO}(g) \] ### Step 1: Define Initial Conditions The initial pressure of \( \text{CH}_3\text{COCH}_3 \) is given as \( 50 \, \text{mm} \). At the start of the reaction, the pressures of \( \text{C}_2\text{H}_6 \) and \( \text{CO} \) are both \( 0 \, \text{mm} \). ### Step 2: Define Changes at Equilibrium Let \( x \) be the amount of pressure that has reacted (decreased) from \( \text{CH}_3\text{COCH}_3 \). Therefore, at equilibrium: - Pressure of \( \text{CH}_3\text{COCH}_3 = 50 - x \) - Pressure of \( \text{C}_2\text{H}_6 = x \) - Pressure of \( \text{CO} = x \) ### Step 3: Total Pressure at Equilibrium The total pressure at equilibrium can be expressed as: \[ P_{\text{total}} = (50 - x) + x + x = 50 + x \] ### Step 4: Use Mole Fraction to Find \( x \) We are given that the mole fraction of \( \text{C}_2\text{H}_6 \) at equilibrium is \( \frac{1}{5} \). The mole fraction is given by: \[ \text{Mole fraction of } \text{C}_2\text{H}_6 = \frac{P_{\text{C}_2\text{H}_6}}{P_{\text{total}}} \] Substituting the values: \[ \frac{x}{50 + x} = \frac{1}{5} \] ### Step 5: Solve for \( x \) Cross-multiplying gives: \[ 5x = 50 + x \] Rearranging the equation: \[ 5x - x = 50 \implies 4x = 50 \implies x = 12.5 \, \text{mm} \] ### Step 6: Calculate Equilibrium Pressures Now we can find the equilibrium pressures: - \( P_{\text{C}_2\text{H}_6} = x = 12.5 \, \text{mm} \) - \( P_{\text{CO}} = x = 12.5 \, \text{mm} \) - \( P_{\text{CH}_3\text{COCH}_3} = 50 - x = 50 - 12.5 = 37.5 \, \text{mm} \) ### Step 7: Calculate \( K_p \) The equilibrium constant \( K_p \) is given by: \[ K_p = \frac{P_{\text{C}_2\text{H}_6} \cdot P_{\text{CO}}}{P_{\text{CH}_3\text{COCH}_3}} \] Substituting the values: \[ K_p = \frac{(12.5)(12.5)}{37.5} \] Calculating: \[ K_p = \frac{156.25}{37.5} = 4.1667 \, \text{mm} \] ### Final Answer Thus, the value of \( K_p \) is approximately \( 4.1667 \, \text{mm} \). ---

To solve the problem, we need to find the equilibrium constant \( K_p \) for the reaction: \[ \text{CH}_3\text{COCH}_3(g) \rightleftharpoons \text{C}_2\text{H}_6(g) + \text{CO}(g) \] ### Step 1: Define Initial Conditions The initial pressure of \( \text{CH}_3\text{COCH}_3 \) is given as \( 50 \, \text{mm} \). At the start of the reaction, the pressures of \( \text{C}_2\text{H}_6 \) and \( \text{CO} \) are both \( 0 \, \text{mm} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

In reaction: CH_(3)COCH_(3)(g)hArrCH_(3)CH_(3)(g)+CO(g), if the initial pressure of CH_(3)COCH_(3)(g) is 150 mm and at equilibrium the mole fraction of CO(g) is 1/3 , then the value K_(P) is

In reaction: CH_(3)COCH_(3)(g)hArrCH_(3)CH_(3)(g)+CO(g), if the initial pressure of CH_(3)COCH_(3)(g) is 150 mm and at equilibrium the mole fraction of CO(g) is 1/3 , then the value K_(P) is

CH_3COCH_3(g)⇌CH_3CH_3(g)+CO(g) Initial pressure of CH_3COCH_3 is 150mm of Hg. When equilibrium is set up fraction of CO(g) is 1/3 . Hence Kp is?

Write the IUPAC name of CH_(3)COCH_(2)COCH_(3) .

Write the IUPAC name of : CH_(3)CH_(2)COCH_(3) .

Calculate the half life of the first-order reaction: C_(2)H_(4)O(g) rarr CH_(4)(g)+CO(g) The initial pressure of C_(2)H_(4)O(g) is 80 mm and the total pressure at the end of 20 min is 120 mm .

Calculate the half life of the first-order reaction: C_(2)H_(4)O(g) rarr CH_(4)(g)+CO(g) The initial pressure of C_(2)H_(4)O(g) is 80 mm and the total pressure at the end of 20 min is 120 mm .

CH_(3)COCH_(3) and CH_(3)CH_(2)CHO can be distinguished by :